本文整理汇总了C#中NBitcoin.BouncyCastle.Math.BigInteger.Mod方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.Mod方法的具体用法?C# BigInteger.Mod怎么用?C# BigInteger.Mod使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类NBitcoin.BouncyCastle.Math.BigInteger
的用法示例。
在下文中一共展示了BigInteger.Mod方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: ChooseRandomPrime
/// <summary>Choose a random prime value for use with RSA</summary>
/// <param name="bitlength">the bit-length of the returned prime</param>
/// <param name="e">the RSA public exponent</param>
/// <returns>a prime p, with (p-1) relatively prime to e</returns>
protected virtual BigInteger ChooseRandomPrime(int bitlength, BigInteger e)
{
for (;;)
{
BigInteger p = new BigInteger(bitlength, 1, param.Random);
if (p.Mod(e).Equals(BigInteger.One))
continue;
if (!p.IsProbablePrime(param.Certainty))
continue;
if (!e.Gcd(p.Subtract(BigInteger.One)).Equals(BigInteger.One))
continue;
return p;
}
}
示例2: GenerateParameters_FIPS186_3
/**
* generate suitable parameters for DSA, in line with
* <i>FIPS 186-3 A.1 Generation of the FFC Primes p and q</i>.
*/
protected virtual DsaParameters GenerateParameters_FIPS186_3()
{
// A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function
IDigest d = digest;
int outlen = d.GetDigestSize() * 8;
// 1. Check that the (L, N) pair is in the list of acceptable (L, N pairs) (see Section 4.2). If
// the pair is not in the list, then return INVALID.
// Note: checked at initialisation
// 2. If (seedlen < N), then return INVALID.
// FIXME This should be configurable (must be >= N)
int seedlen = N;
byte[] seed = new byte[seedlen / 8];
// 3. n = ceiling(L ⁄ outlen) – 1.
int n = (L - 1) / outlen;
// 4. b = L – 1 – (n ∗ outlen).
int b = (L - 1) % outlen;
byte[] output = new byte[d.GetDigestSize()];
for (;;)
{
// 5. Get an arbitrary sequence of seedlen bits as the domain_parameter_seed.
random.NextBytes(seed);
// 6. U = Hash (domain_parameter_seed) mod 2^(N–1).
Hash(d, seed, output);
BigInteger U = new BigInteger(1, output).Mod(BigInteger.One.ShiftLeft(N - 1));
// 7. q = 2^(N–1) + U + 1 – ( U mod 2).
BigInteger q = BigInteger.One.ShiftLeft(N - 1).Add(U).Add(BigInteger.One).Subtract(
U.Mod(BigInteger.Two));
// 8. Test whether or not q is prime as specified in Appendix C.3.
// TODO Review C.3 for primality checking
if (!q.IsProbablePrime(certainty))
{
// 9. If q is not a prime, then go to step 5.
continue;
}
// 10. offset = 1.
// Note: 'offset' value managed incrementally
byte[] offset = Arrays.Clone(seed);
// 11. For counter = 0 to (4L – 1) do
int counterLimit = 4 * L;
for (int counter = 0; counter < counterLimit; ++counter)
{
// 11.1 For j = 0 to n do
// Vj = Hash ((domain_parameter_seed + offset + j) mod 2^seedlen).
// 11.2 W = V0 + (V1 ∗ 2^outlen) + ... + (V^(n–1) ∗ 2^((n–1) ∗ outlen)) + ((Vn mod 2^b) ∗ 2^(n ∗ outlen)).
// TODO Assemble w as a byte array
BigInteger W = BigInteger.Zero;
for (int j = 0, exp = 0; j <= n; ++j, exp += outlen)
{
Inc(offset);
Hash(d, offset, output);
BigInteger Vj = new BigInteger(1, output);
if (j == n)
{
Vj = Vj.Mod(BigInteger.One.ShiftLeft(b));
}
W = W.Add(Vj.ShiftLeft(exp));
}
// 11.3 X = W + 2^(L–1). Comment: 0 ≤ W < 2L–1; hence, 2L–1 ≤ X < 2L.
BigInteger X = W.Add(BigInteger.One.ShiftLeft(L - 1));
// 11.4 c = X mod 2q.
BigInteger c = X.Mod(q.ShiftLeft(1));
// 11.5 p = X - (c - 1). Comment: p ≡ 1 (mod 2q).
BigInteger p = X.Subtract(c.Subtract(BigInteger.One));
// 11.6 If (p < 2^(L - 1)), then go to step 11.9
if (p.BitLength != L)
continue;
// 11.7 Test whether or not p is prime as specified in Appendix C.3.
// TODO Review C.3 for primality checking
if (p.IsProbablePrime(certainty))
{
// 11.8 If p is determined to be prime, then return VALID and the values of p, q and
// (optionally) the values of domain_parameter_seed and counter.
// TODO Make configurable (8-bit unsigned)?
if (usageIndex >= 0)
{
BigInteger g = CalculateGenerator_FIPS186_3_Verifiable(d, p, q, seed, usageIndex);
if (g != null)
return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter, usageIndex));
//.........这里部分代码省略.........
示例3: DecodeBlock
/**
* @exception InvalidCipherTextException if the decrypted block is not a valid ISO 9796 bit string
*/
private byte[] DecodeBlock(
byte[] input,
int inOff,
int inLen)
{
byte[] block = engine.ProcessBlock(input, inOff, inLen);
int r = 1;
int t = (bitSize + 13) / 16;
BigInteger iS = new BigInteger(1, block);
BigInteger iR;
if (iS.Mod(Sixteen).Equals(Six))
{
iR = iS;
}
else
{
iR = modulus.Subtract(iS);
if (!iR.Mod(Sixteen).Equals(Six))
throw new InvalidCipherTextException("resulting integer iS or (modulus - iS) is not congruent to 6 mod 16");
}
block = iR.ToByteArrayUnsigned();
if ((block[block.Length - 1] & 0x0f) != 0x6)
throw new InvalidCipherTextException("invalid forcing byte in block");
block[block.Length - 1] =
(byte)(((ushort)(block[block.Length - 1] & 0xff) >> 4)
| ((inverse[(block[block.Length - 2] & 0xff) >> 4]) << 4));
block[0] = (byte)((shadows[(uint) (block[1] & 0xff) >> 4] << 4)
| shadows[block[1] & 0x0f]);
bool boundaryFound = false;
int boundary = 0;
for (int i = block.Length - 1; i >= block.Length - 2 * t; i -= 2)
{
int val = ((shadows[(uint) (block[i] & 0xff) >> 4] << 4)
| shadows[block[i] & 0x0f]);
if (((block[i - 1] ^ val) & 0xff) != 0)
{
if (!boundaryFound)
{
boundaryFound = true;
r = (block[i - 1] ^ val) & 0xff;
boundary = i - 1;
}
else
{
throw new InvalidCipherTextException("invalid tsums in block");
}
}
}
block[boundary] = 0;
byte[] nblock = new byte[(block.Length - boundary) / 2];
for (int i = 0; i < nblock.Length; i++)
{
nblock[i] = block[2 * i + boundary + 1];
}
padBits = r - 1;
return nblock;
}
示例4: GenerateParameters_FIPS186_2
protected virtual DsaParameters GenerateParameters_FIPS186_2()
{
byte[] seed = new byte[20];
byte[] part1 = new byte[20];
byte[] part2 = new byte[20];
byte[] u = new byte[20];
int n = (L - 1) / 160;
byte[] w = new byte[L / 8];
if (!(digest is Sha1Digest))
throw new InvalidOperationException("can only use SHA-1 for generating FIPS 186-2 parameters");
for (;;)
{
random.NextBytes(seed);
Hash(digest, seed, part1);
Array.Copy(seed, 0, part2, 0, seed.Length);
Inc(part2);
Hash(digest, part2, part2);
for (int i = 0; i != u.Length; i++)
{
u[i] = (byte)(part1[i] ^ part2[i]);
}
u[0] |= (byte)0x80;
u[19] |= (byte)0x01;
BigInteger q = new BigInteger(1, u);
if (!q.IsProbablePrime(certainty))
continue;
byte[] offset = Arrays.Clone(seed);
Inc(offset);
for (int counter = 0; counter < 4096; ++counter)
{
for (int k = 0; k < n; k++)
{
Inc(offset);
Hash(digest, offset, part1);
Array.Copy(part1, 0, w, w.Length - (k + 1) * part1.Length, part1.Length);
}
Inc(offset);
Hash(digest, offset, part1);
Array.Copy(part1, part1.Length - ((w.Length - (n) * part1.Length)), w, 0, w.Length - n * part1.Length);
w[0] |= (byte)0x80;
BigInteger x = new BigInteger(1, w);
BigInteger c = x.Mod(q.ShiftLeft(1));
BigInteger p = x.Subtract(c.Subtract(BigInteger.One));
if (p.BitLength != L)
continue;
if (p.IsProbablePrime(certainty))
{
BigInteger g = CalculateGenerator_FIPS186_2(p, q, random);
return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter));
}
}
}
}