本文整理汇总了C#中GeometryTutorLib.ConcreteAST.Segment.PointLiesOnAndBetweenEndpoints方法的典型用法代码示例。如果您正苦于以下问题:C# Segment.PointLiesOnAndBetweenEndpoints方法的具体用法?C# Segment.PointLiesOnAndBetweenEndpoints怎么用?C# Segment.PointLiesOnAndBetweenEndpoints使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GeometryTutorLib.ConcreteAST.Segment
的用法示例。
在下文中一共展示了Segment.PointLiesOnAndBetweenEndpoints方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: CoordinateMedian
public bool CoordinateMedian(Segment thatSegment)
{
//
// Two sides must intersect the median at a single point
//
Point midptIntersection = null;
Point coincidingIntersection = null;
Segment oppSide = null;
if (Segment.IntersectAtSamePoint(SegmentA, SegmentB, thatSegment))
{
coincidingIntersection = SegmentA.FindIntersection(SegmentB);
midptIntersection = SegmentC.FindIntersection(thatSegment);
oppSide = SegmentC;
}
else if (Segment.IntersectAtSamePoint(SegmentA, SegmentC, thatSegment))
{
coincidingIntersection = SegmentA.FindIntersection(SegmentC);
midptIntersection = SegmentB.FindIntersection(thatSegment);
oppSide = SegmentB;
}
else if (Segment.IntersectAtSamePoint(SegmentB, SegmentC, thatSegment))
{
coincidingIntersection = SegmentB.FindIntersection(SegmentC);
midptIntersection = SegmentA.FindIntersection(thatSegment);
oppSide = SegmentA;
}
if (midptIntersection == null || oppSide == null) return false;
// It is possible for the segment to be parallel to the opposite side; results in NaN.
if (midptIntersection.X == double.NaN || midptIntersection.Y == double.NaN) return false;
// The intersection must be on the potential median
if (!thatSegment.PointLiesOnAndBetweenEndpoints(coincidingIntersection)) return false;
// The midpoint intersection must be on the potential median
if (!thatSegment.PointLiesOnAndBetweenEndpoints(midptIntersection)) return false;
if (!Segment.Between(coincidingIntersection, thatSegment.Point1, thatSegment.Point2)) return false;
if (!oppSide.PointLiesOnAndBetweenEndpoints(midptIntersection)) return false;
// Midpoint of the remaining side needs to align
return midptIntersection.Equals(oppSide.Midpoint());
}
示例2: FindIntersection
public override void FindIntersection(Segment that, out Point inter1, out Point inter2)
{
// Find the points of intersection
this.theCircle.FindIntersection(that, out inter1, out inter2);
// The points must be on this minor arc.
if (this is MinorArc)
{
if (!Arc.BetweenMinor(inter1, this)) inter1 = null;
if (!Arc.BetweenMinor(inter2, this)) inter2 = null;
}
else if (this is MajorArc)
{
if (!Arc.BetweenMajor(inter1, this)) inter1 = null;
if (!Arc.BetweenMajor(inter2, this)) inter2 = null;
}
else if (this is Semicircle)
{
if (!(this as Semicircle).PointLiesOn(inter1)) inter1 = null;
if (!(this as Semicircle).PointLiesOn(inter2)) inter2 = null;
}
if (!that.PointLiesOnAndBetweenEndpoints(inter1)) inter1 = null;
if (!that.PointLiesOnAndBetweenEndpoints(inter2)) inter2 = null;
if (inter1 == null && inter2 != null)
{
inter1 = inter2;
inter2 = null;
}
}
示例3: CoordinateAltitude
//
// Is this segment an altitude based on the coordinates (precomputation)
//
public bool CoordinateAltitude(Segment thatSegment)
{
//
// Check to see if the altitude is actually one of the sides of the triangle
//
if (this.HasSegment(thatSegment) && this.isRight)
{
// Find the right angle; the altitude must be one of those segments
if (Utilities.CompareValues(this.AngleA.measure, 90)) return AngleA.HasSegment(thatSegment);
if (Utilities.CompareValues(this.AngleB.measure, 90)) return AngleB.HasSegment(thatSegment);
if (Utilities.CompareValues(this.AngleC.measure, 90)) return AngleC.HasSegment(thatSegment);
}
//
// Two sides must intersect the given segment at a single point
//
Point otherIntersection = null;
Point thisIntersection = null;
Segment oppSide = null;
if (Segment.IntersectAtSamePoint(SegmentA, SegmentB, thatSegment))
{
thisIntersection = SegmentA.FindIntersection(SegmentB);
otherIntersection = SegmentC.FindIntersection(thatSegment);
oppSide = SegmentC;
}
if (Segment.IntersectAtSamePoint(SegmentA, SegmentC, thatSegment))
{
thisIntersection = SegmentA.FindIntersection(SegmentC);
otherIntersection = SegmentB.FindIntersection(thatSegment);
oppSide = SegmentB;
}
if (Segment.IntersectAtSamePoint(SegmentB, SegmentC, thatSegment))
{
thisIntersection = SegmentB.FindIntersection(SegmentC);
otherIntersection = SegmentA.FindIntersection(thatSegment);
oppSide = SegmentA;
}
if (otherIntersection == null || oppSide == null) return false;
// Avoid a dangling altitude:
//
// |\
// | \
// | \
// \
// Need to make sure 'this' and the the 'other' intersection is actually on the potential altitude segment
if (!thatSegment.PointLiesOnAndBetweenEndpoints(thisIntersection)) return false;
if (!thatSegment.PointLiesOnAndBetweenEndpoints(otherIntersection)) return false;
// We require a perpendicular intersection
return Utilities.CompareValues((new Angle(thisIntersection, otherIntersection, oppSide.Point1)).measure, 90);
}
示例4: ContainsDiameter
//
// Does the given segment pass through the circle so that it acts as a diameter (or contains a diameter)?
//
private bool ContainsDiameter(Segment segment)
{
if (!segment.PointLiesOnAndBetweenEndpoints(this.center)) return false;
// the endpoints of the segment must be on or outside the circle.
double distance = Point.calcDistance(this.center, segment.Point1);
if (distance < this.radius) return false;
distance = Point.calcDistance(this.center, segment.Point2);
if (distance < this.radius) return false;
return true;
}
示例5: InstantiateToDef
//
// Construct the AngleBisector if we have
//
// V---------------A
// / \
// / \
// / \
// B C
//
// Congruent(Angle, A, V, C), Angle(C, V, B)), Segment(V, C)) -> AngleBisector(Angle(A, V, B)
//
//
private static List<EdgeAggregator> InstantiateToDef(CongruentAngles cas, Segment segment)
{
List<EdgeAggregator> newGrounded = new List<EdgeAggregator>();
// Find the shared segment between the two angles; we know it is valid if we reach this point
Segment shared = cas.AreAdjacent();
// The bisector must align with the given segment
if (!segment.IsCollinearWith(shared)) return newGrounded;
// We need a true bisector in which the shared vertex of the angles in between the endpoints of this segment
if (!segment.PointLiesOnAndBetweenEndpoints(cas.ca1.GetVertex())) return newGrounded;
//
// Create the overall angle which is being bisected
//
Point vertex = cas.ca1.GetVertex();
Segment newRay1 = cas.ca1.OtherRayEquates(shared);
Segment newRay2 = cas.ca2.OtherRayEquates(shared);
Angle combinedAngle = new Angle(newRay1.OtherPoint(vertex), vertex, newRay2.OtherPoint(vertex));
// Determine if the segment is a straight angle (we don't want an angle bisector here, we would want a segment bisector)
if (newRay1.IsCollinearWith(newRay2)) return newGrounded;
// The bisector cannot be of the form:
// \
// \
// V---------------A
// /
// /
// B
if (!combinedAngle.IsOnInteriorExplicitly(segment.Point1) && !combinedAngle.IsOnInteriorExplicitly(segment.Point2)) return newGrounded;
AngleBisector newAB = new AngleBisector(combinedAngle, segment);
// For hypergraph
List<GroundedClause> antecedent = new List<GroundedClause>();
antecedent.Add(segment);
antecedent.Add(cas);
newGrounded.Add(new EdgeAggregator(antecedent, newAB, annotation));
return newGrounded;
}
示例6: HasSegment
public bool HasSegment(Segment thatSegment)
{
return segment.HasSubSegment(thatSegment) && thatSegment.PointLiesOnAndBetweenEndpoints(intersect);
}
示例7: IsTangent
//
// Determine tangency of the given segment.
// Indicate tangency by returning the segment which creates the 90^0 angle.
//
public Segment IsTangent(Segment segment)
{
// If the center and the segment points are collinear, this will not be a tangent.
if (segment.PointLiesOn(this.center)) return null;
// Acquire the line perpendicular to the segment that passes through the center of the circle.
Segment perpendicular = segment.GetPerpendicular(this.center);
// If the segment was found to pass through the center, it is not a tangent
if (perpendicular.Equals(segment)) return null;
// Is this perpendicular segment a radius? Check length
//if (!Utilities.CompareValues(perpendicular.Length, this.radius)) return null;
// Is the perpendicular a radius? Check that the intersection of the segment and the perpendicular is on the circle
Point intersection = segment.FindIntersection(perpendicular);
if (!this.PointLiesOn(intersection)) return null;
// The intersection between the perpendicular and the segment must be within the endpoints of the segment.
return segment.PointLiesOnAndBetweenEndpoints(intersection) ? perpendicular : null;
}
示例8: FindIntersection
public override void FindIntersection(Segment that, out Point inter1, out Point inter2)
{
inter1 = FindIntersection(that);
inter2 = null;
if (!this.PointLiesOnAndBetweenEndpoints(inter1)) inter1 = null;
if (!that.PointLiesOnAndBetweenEndpoints(inter1)) inter1 = null;
}
示例9: FindIntersection
public override void FindIntersection(Segment that, out Point inter1, out Point inter2)
{
inter1 = null;
inter2 = null;
Point foundInter = null;
List<Point> intersections = new List<Point>();
foreach (Segment side in orderedSides)
{
if (side.IsCollinearWith(that))
{
if (that.PointLiesOnAndBetweenEndpoints(side.Point1)) Utilities.AddStructurallyUnique<Point>(intersections, side.Point1);
if (that.PointLiesOnAndBetweenEndpoints(side.Point2)) Utilities.AddStructurallyUnique<Point>(intersections, side.Point2);
if (side.PointLiesOnAndBetweenEndpoints(that.Point1)) Utilities.AddStructurallyUnique<Point>(intersections, that.Point1);
if (side.PointLiesOnAndBetweenEndpoints(that.Point2)) Utilities.AddStructurallyUnique<Point>(intersections, that.Point2);
}
else
{
foundInter = side.FindIntersection(that);
// Is the intersection in the middle of the segments?
if (side.PointLiesOnAndBetweenEndpoints(foundInter) && that.PointLiesOnAndBetweenEndpoints(foundInter))
{
// A segment may intersect a polygon through up to 2 vertices creating 4 intersections.
if (!Utilities.HasStructurally<Point>(intersections, foundInter)) intersections.Add(foundInter);
}
}
}
if (!(this is ConcavePolygon) && intersections.Count > 2)
{
throw new Exception("A segment intersecting a polygon may have up to 2 intersection points, not: " + intersections.Count);
}
if (intersections.Any()) inter1 = intersections[0];
if (intersections.Count > 1) inter2 = intersections[1];
}
示例10: CoordinateBisector
//
// Is thatSegment a bisector of this segment in terms of the coordinatization from the UI?
//
public Point CoordinateBisector(Segment thatSegment)
{
// Do these segments intersect within both sets of stated endpoints?
Point intersection = this.FindIntersection(thatSegment);
if (!this.PointLiesOnAndExactlyBetweenEndpoints(intersection)) return null;
if (!thatSegment.PointLiesOnAndBetweenEndpoints(intersection)) return null;
// Do they intersect in the middle of this segment
return Utilities.CompareValues(Point.calcDistance(this.Point1, intersection), Point.calcDistance(this.Point2, intersection)) ? intersection : null;
}
示例11: CoordinatePerpendicular
//
// Is this segment perpendicular to the given segment in terms of the coordinatization from the UI?
//
public Point CoordinatePerpendicular(Segment thatSegment)
{
//
// Do these segments intersect within both sets of stated endpoints?
//
Point intersection = this.FindIntersection(thatSegment);
if (!this.PointLiesOnAndBetweenEndpoints(intersection)) return null;
if (!thatSegment.PointLiesOnAndBetweenEndpoints(intersection)) return null;
//
// Special Case
//
if ((IsVertical() && thatSegment.IsHorizontal()) || (thatSegment.IsVertical() && IsHorizontal())) return intersection;
// Does m1 * m2 = -1 (opposite reciprocal slopes)
return Utilities.CompareValues(thatSegment.Slope * this.Slope, -1) ? intersection : null;
}
示例12: InstantiateToDef
//
// Take the angle congruence and bisector and create the AngleBisector relation
// \
// \
// B ---------V---------A
// \
// \
// C
//
private static List<EdgeAggregator> InstantiateToDef(Point intersectionPoint, Intersection inter, CongruentSegments cs)
{
List<EdgeAggregator> newGrounded = new List<EdgeAggregator>();
// Does the given point of intersection apply to this actual intersection object
if (!intersectionPoint.Equals(inter.intersect)) return newGrounded;
// The entire segment AB
Segment overallSegment = new Segment(cs.cs1.OtherPoint(intersectionPoint), cs.cs2.OtherPoint(intersectionPoint));
// The segment must align completely with one of the intersection segments
Segment interCollinearSegment = inter.GetCollinearSegment(overallSegment);
if (interCollinearSegment == null) return newGrounded;
// Does this intersection have the entire segment AB
if (!inter.HasSegment(overallSegment)) return newGrounded;
Segment bisector = inter.OtherSegment(overallSegment);
Segment bisectedSegment = inter.GetCollinearSegment(overallSegment);
// Check if the bisected segment extends is the exact same segment as the overall segment AB
if (!bisectedSegment.StructurallyEquals(overallSegment))
{
if (overallSegment.PointLiesOnAndBetweenEndpoints(bisectedSegment.Point1) &&
overallSegment.PointLiesOnAndBetweenEndpoints(bisectedSegment.Point2)) return newGrounded;
}
SegmentBisector newSB = new SegmentBisector(inter, bisector);
// For hypergraph
List<GroundedClause> antecedent = new List<GroundedClause>();
antecedent.Add(inter);
antecedent.Add(cs);
newGrounded.Add(new EdgeAggregator(antecedent, newSB, annotation));
return newGrounded;
}
示例13: CoordinateAngleBisector
public bool CoordinateAngleBisector(Segment thatSegment)
{
if (!thatSegment.PointLiesOnAndBetweenEndpoints(this.GetVertex())) return false;
if (thatSegment.IsCollinearWith(this.ray1) || thatSegment.IsCollinearWith(this.ray2)) return false;
Point interiorPoint = this.IsOnInteriorExplicitly(thatSegment.Point1) ? thatSegment.Point1 : thatSegment.Point2;
if (!this.IsOnInteriorExplicitly(interiorPoint)) return false;
Angle angle1 = new Angle(A, GetVertex(), interiorPoint);
Angle angle2 = new Angle(C, GetVertex(), interiorPoint);
return Utilities.CompareValues(angle1.measure, angle2.measure);
}
示例14: PointLiesOn
//
// Point is on the perimeter?
//
public override bool PointLiesOn(Point pt)
{
if (pt == null) return false;
// Radii
KeyValuePair<Segment, Segment> radii = theArc.GetRadii();
if (radii.Key.PointLiesOnAndBetweenEndpoints(pt) || radii.Value.PointLiesOnAndBetweenEndpoints(pt)) return true;
// This point must lie on the circle in question, minimally.
if (!theArc.theCircle.PointLiesOn(pt)) return false;
// Arc
if (theArc is MajorArc) return Arc.BetweenMajor(pt, theArc as MajorArc);
else if (theArc is MinorArc) return Arc.BetweenMinor(pt, theArc as MinorArc);
else if (theArc is Semicircle)
{
Semicircle semi = theArc as Semicircle;
// The point in question must lie on the same side of the diameter as the middle point
Segment candSeg = new Segment(pt, semi.middlePoint);
Point intersection = semi.diameter.FindIntersection(candSeg);
return !candSeg.PointLiesOnAndBetweenEndpoints(intersection);
}
return false;
}
示例15: PointLiesInside
//
// Point must be in the given circle and then, specifically in the specified angle
//
public override bool PointLiesInside(Point pt)
{
// Is the point in the sector's circle?
if (!theArc.theCircle.PointLiesInside(pt)) return false;
// Radii
if (radius1.PointLiesOnAndBetweenEndpoints(pt)) return false;
if (radius2.PointLiesOnAndBetweenEndpoints(pt)) return false;
//
// For the Minor Arc, create two angles.
// The sum must equal the measure of the angle created by the endpoints.
//
double originalMinorMeasure = theArc.minorMeasure;
double centralAngle1 = new Angle(theArc.endpoint1, theArc.theCircle.center, pt).measure;
double centralAngle2 = new Angle(theArc.endpoint2, theArc.theCircle.center, pt).measure;
bool isInMinorArc = Utilities.CompareValues(theArc.minorMeasure, centralAngle1 + centralAngle2);
if (theArc is MinorArc) return isInMinorArc;
if (theArc is MajorArc) return !isInMinorArc;
if (theArc is Semicircle)
{
Semicircle semi = theArc as Semicircle;
// The point in question must lie on the same side of the diameter as the middle point
Segment candSeg = new Segment(pt, semi.middlePoint);
Point intersection = semi.diameter.FindIntersection(candSeg);
return !candSeg.PointLiesOnAndBetweenEndpoints(intersection);
}
return false;
}