本文整理汇总了C#中GeometryTutorLib.ConcreteAST.Segment.AddCollinearPoint方法的典型用法代码示例。如果您正苦于以下问题:C# Segment.AddCollinearPoint方法的具体用法?C# Segment.AddCollinearPoint怎么用?C# Segment.AddCollinearPoint使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GeometryTutorLib.ConcreteAST.Segment
的用法示例。
在下文中一共展示了Segment.AddCollinearPoint方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Atomize
public List<Area_Based_Analyses.Atomizer.AtomicRegion> Atomize(List<Point> figurePoints)
{
List<Segment> constructedChords = new List<Segment>();
List<Segment> constructedRadii = new List<Segment>();
List<Point> imagPoints = new List<Point>();
List<Point> interPts = GetIntersectingPoints();
//
// Construct the radii
//
switch (interPts.Count)
{
// If there are no points of interest, the circle is the atomic region.
case 0:
return Utilities.MakeList<AtomicRegion>(new ShapeAtomicRegion(this));
// If only 1 intersection point, create the diameter.
case 1:
Point opp = Utilities.AcquirePoint(figurePoints, this.OppositePoint(interPts[0]));
constructedRadii.Add(new Segment(center, interPts[0]));
constructedRadii.Add(new Segment(center, opp));
imagPoints.Add(opp);
interPts.Add(opp);
break;
default:
foreach (Point interPt in interPts)
{
constructedRadii.Add(new Segment(center, interPt));
}
break;
}
//
// Construct the chords
//
List<Segment> chords = new List<Segment>();
for (int p1 = 0; p1 < interPts.Count - 1; p1++)
{
for (int p2 = p1 + 1; p2 < interPts.Count; p2++)
{
Segment chord = new Segment(interPts[p1], interPts[p2]);
if (!DefinesDiameter(chord)) constructedChords.Add(chord);
}
}
//
// Do any of the created segments result in imaginary intersection points.
//
foreach (Segment chord in constructedChords)
{
foreach (Segment radius in constructedRadii)
{
Point inter = Utilities.AcquireRestrictedPoint(figurePoints, chord.FindIntersection(radius), chord, radius);
if (inter != null)
{
chord.AddCollinearPoint(inter);
radius.AddCollinearPoint(inter);
// if (!Utilities.HasStructurally<Point>(figurePoints, inter)) imagPoints.Add(inter);
Utilities.AddUnique<Point>(imagPoints, inter);
}
}
}
for (int c1 = 0; c1 < constructedChords.Count - 1; c1++)
{
for (int c2 = c1 + 1; c2 < constructedChords.Count; c2++)
{
Point inter = constructedChords[c1].FindIntersection(constructedChords[c2]);
inter = Utilities.AcquireRestrictedPoint(figurePoints, inter, constructedChords[c1], constructedChords[c2]);
if (inter != null)
{
constructedChords[c1].AddCollinearPoint(inter);
constructedChords[c2].AddCollinearPoint(inter);
//if (!Utilities.HasStructurally<Point>(figurePoints, inter)) imagPoints.Add(inter);
Utilities.AddUnique<Point>(imagPoints, inter);
}
}
}
//
// Add all imaginary points to the list of figure points.
//
Utilities.AddUniqueList<Point>(figurePoints, imagPoints);
//
// Construct the Planar graph for atomic region identification.
//
Area_Based_Analyses.Atomizer.UndirectedPlanarGraph.PlanarGraph graph = new Area_Based_Analyses.Atomizer.UndirectedPlanarGraph.PlanarGraph();
//
// Add all imaginary points, intersection points, and center.
//
foreach (Point pt in imagPoints)
{
graph.AddNode(pt);
}
//.........这里部分代码省略.........
示例2: ConvertToCircleCircle
//
// This is a complex situation because we need to identify situations where circles intersect with the resultant regions:
// (| (|)
// ( | ( | )
// ( | ( | )
// ( | ( | )
// (| (|)
//
// Note: There will always be a chord because of our implied construction.
// We are interested in only minor arcs of the given circles.
//
private List<Atomizer.AtomicRegion> ConvertToCircleCircle(Segment chord,
List<Circle> circles,
out Circle leftOuterCircle,
out Circle rightOuterCircle)
{
List<Atomizer.AtomicRegion> regions = new List<Atomizer.AtomicRegion>();
leftOuterCircle = null;
rightOuterCircle = null;
//
// Simple cases that require no special attention.
//
if (!circles.Any()) return null;
if (circles.Count == 1)
{
leftOuterCircle = circles[0];
regions.AddRange(ConstructBasicLineCircleRegion(chord, circles[0]));
return regions;
}
// All circles that are on each side of the chord
List<Circle> leftSide = new List<Circle>();
List<Circle> rightSide = new List<Circle>();
// For now, assume max, one circle per side.
// Construct a collinear list of points that includes all circle centers as well as the single intersection point between the chord and the line passing through all circle centers.
// This orders the sides and provides implied sizes.
Segment centerLine = new Segment(circles[0].center, circles[1].center);
for (int c = 2; c < circles.Count; c++)
{
centerLine.AddCollinearPoint(circles[c].center);
}
// Find the intersection between the center-line and the chord; add that to the list.
Point intersection = centerLine.FindIntersection(chord);
centerLine.AddCollinearPoint(intersection);
List<Point> collPoints = centerLine.collinear;
int interIndex = collPoints.IndexOf(intersection);
for (int i = 0; i < collPoints.Count; i++)
{
// find the circle based on center
int c;
for (c = 0; c < circles.Count; c++)
{
if (circles[c].center.StructurallyEquals(collPoints[i])) break;
}
// Add the circle in order
if (i < interIndex) leftSide.Add(circles[c]);
else if (i > interIndex) rightSide.Add(circles[c]);
}
// the outermost circle is first in the left list and last in the right list.
if (leftSide.Any()) leftOuterCircle = leftSide[0];
if (rightSide.Any()) rightOuterCircle = rightSide[rightSide.Count - 1];
//
// Main combining algorithm:
// Assume: Increasing Arc sequence A \in A_1, A_2, ..., A_n and the single chord C
//
// Construct region B = (C, A_1)
// For the increasing Arc sequence (k subscript) A_2, A_3, ..., A_n
// B = Construct ((C, A_k) \ B)
//
// Alternatively:
// Construct(C, A_1)
// for each pair Construct (A_k, A_{k+1})
//
//
// Handle each side: left and right.
//
if (leftSide.Any()) regions.AddRange(ConstructBasicLineCircleRegion(chord, leftSide[leftSide.Count - 1]));
for (int ell = 0; ell < leftSide.Count - 2; ell++)
{
regions.Add(ConstructBasicCircleCircleRegion(chord, leftSide[ell], leftSide[ell + 1]));
}
if (rightSide.Any()) regions.AddRange(ConstructBasicLineCircleRegion(chord, rightSide[0]));
for (int r = 1; r < rightSide.Count - 1; r++)
{
regions.Add(ConstructBasicCircleCircleRegion(chord, rightSide[r], rightSide[r + 1]));
}
return regions;
}