当前位置: 首页>>代码示例>>C#>>正文


C# Segment.FindIntersection方法代码示例

本文整理汇总了C#中GeometryTutorLib.ConcreteAST.Segment.FindIntersection方法的典型用法代码示例。如果您正苦于以下问题:C# Segment.FindIntersection方法的具体用法?C# Segment.FindIntersection怎么用?C# Segment.FindIntersection使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GeometryTutorLib.ConcreteAST.Segment的用法示例。


在下文中一共展示了Segment.FindIntersection方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Page306Theorem7_4_1

        //Demonstrates: congruent chords have congruent arcs
        public Page306Theorem7_4_1(bool onoff, bool complete)
            : base(onoff, complete)
        {
            Point o = new Point("O", 0, 0); points.Add(o);
            Point r = new Point("R", -3, 4); points.Add(r);
            Point s = new Point("S", 2, Math.Sqrt(21)); points.Add(s);
            Point t = new Point("T", 2, -Math.Sqrt(21)); points.Add(t);
            Point u = new Point("U", -3, -4); points.Add(u);

            Segment rt = new Segment(r, t);
            Segment su = new Segment(s, u);
            Point v = rt.FindIntersection(su); points.Add(v);

            Segment rs = new Segment(r, s); segments.Add(rs);
            Segment ut = new Segment(u, t); segments.Add(ut);

            Circle c = new Circle(o, 5.0);
            circles.Add(c);

            parser = new LiveGeometry.TutorParser.HardCodedParserMain(points, collinear, segments, circles, onoff);

            given.Add(new GeometricCongruentSegments(rs, ut));

            MinorArc a1 = (MinorArc)parser.Get(new MinorArc(c, r, s));
            MinorArc a2 = (MinorArc)parser.Get(new MinorArc(c, t, u));
            MajorArc ma1 = (MajorArc)parser.Get(new MajorArc(c, r, s));
            MajorArc ma2 = (MajorArc)parser.Get(new MajorArc(c, t, u));

            goals.Add(new GeometricCongruentArcs(a1, a2));
            goals.Add(new GeometricCongruentArcs(ma1, ma2));
        }
开发者ID:wcatykid,项目名称:GeoShader,代码行数:32,代码来源:Page306Theorem7_4_1.cs

示例2: Test04

        //Demonstrates: ExteriorAngleHalfDifferenceInterceptedArcs : two secants
        public Test04(bool onoff, bool complete)
            : base(onoff, complete)
        {
            //Circle
            Point o = new Point("O", 0, 0); points.Add(o);
            Circle circleO = new Circle(o, 5.0);
            circles.Add(circleO);

            //Intersection point for two secants
            Point x = new Point("X", 0, 6); points.Add(x);

            //Secant intersection points for circle O
            Point a = new Point("A", -3, -4); points.Add(a);
            Point b = new Point("B", 3, -4); points.Add(b);
            Point c, d, trash;
            circleO.FindIntersection(new Segment(b, x), out c, out trash);
            if (b.StructurallyEquals(c)) c = trash;
            c = new Point("C", c.X, c.Y);
            points.Add(c);
            circleO.FindIntersection(new Segment(a, x), out d, out trash);
            if (a.StructurallyEquals(d)) d = trash;
            d = new Point("D", d.X, d.Y);
            points.Add(d);

            //Create point for another arc (Arc(CE)) of equal measure to (1/2)*(Arc(AB)-Arc(CD))
            Point e = new Point("E", 3, 4); points.Add(e);

            //Should now be able to form segments for a central angle of equal measure to (1/2)*(Arc(AB)-Arc(CD))
            Segment oc = new Segment(o, c); segments.Add(oc);
            Segment oe = new Segment(o, e); segments.Add(oe);

            //Label the intersection betweeen OE and BX
            Point i = oe.FindIntersection(new Segment(b, x));
            i = new Point("I", i.X, i.Y); points.Add(i);

            List<Point> pnts = new List<Point>();
            pnts.Add(a);
            pnts.Add(d);
            pnts.Add(x);
            collinear.Add(new Collinear(pnts));

            pnts = new List<Point>();
            pnts.Add(b);
            pnts.Add(i);
            pnts.Add(c);
            pnts.Add(x);
            collinear.Add(new Collinear(pnts));

            parser = new GeometryTutorLib.TutorParser.HardCodedParserMain(points, collinear, segments, circles, onoff);

            MinorArc farMinor1 = (MinorArc)parser.Get(new MinorArc(circleO, a, b));
            MinorArc closeMinor1 = (MinorArc)parser.Get(new MinorArc(circleO, c, d));
            MinorArc centralAngleArc = (MinorArc)parser.Get(new MinorArc(circleO, c, e));
            given.Add(new GeometricArcEquation(new Multiplication(new NumericValue(2), centralAngleArc), new Subtraction(farMinor1, closeMinor1)));

            goals.Add(new GeometricCongruentAngles((Angle)parser.Get(new Angle(a, x, b)), (Angle)parser.Get(new Angle(c, o, e))));
        }
开发者ID:wcatykid,项目名称:GeoShader,代码行数:58,代码来源:Test04.cs

示例3: Test08

        //Demonstrates: If two inscribed angles intercept the same arc, the angles are congruent
        public Test08(bool onoff, bool complete)
            : base(onoff, complete)
        {
            //Points for chord BAC
            Point a = new Point("A", -1, -System.Math.Sqrt(24)); points.Add(a);
            Point b = new Point("B", -3, 4); points.Add(b);
            Point c = new Point("C", 2, System.Math.Sqrt(21)); points.Add(c);

            //Points for angle BDC
            Point d = new Point("D", 3, -4); points.Add(d);

            //Lable the intersection between BD and AC
            Segment ac = new Segment(a, c);
            Segment db = new Segment(d, b);
            Point i = ac.FindIntersection(db);
            i = new Point("I", i.X, i.Y); points.Add(i);

            //Segments for both angles
            Segment ab = new Segment(a, b); segments.Add(ab);
            Segment dc = new Segment(d, c); segments.Add(dc);

            List<Point> pnts = new List<Point>();
            pnts.Add(a);
            pnts.Add(i);
            pnts.Add(c);
            collinear.Add(new Collinear(pnts));

            pnts = new List<Point>();
            pnts.Add(d);
            pnts.Add(i);
            pnts.Add(b);
            collinear.Add(new Collinear(pnts));

            //Circle
            Point o = new Point("O", 0, 0); points.Add(o);
            Circle circleO = new Circle(o, 5.0);
            circles.Add(circleO);

            parser = new GeometryTutorLib.TutorParser.HardCodedParserMain(points, collinear, segments, circles, onoff);

            goals.Add(new GeometricCongruentAngles((Angle)parser.Get(new Angle(b, a, c)), (Angle)parser.Get(new Angle(b, d, c))));
        }
开发者ID:wcatykid,项目名称:GeoShader,代码行数:43,代码来源:Test08.cs

示例4: Test07

        //Demonstrates: Measure of an angle formed by two chords that intersect inside a circle is equal to half the sum of the measures
        //of the intercepted arcs
        //To see use of theorem, need to turn off VERTICAL_ANGLES and RELATIONS_OF_CONGRUENT_ANGLES_ARE_CONGRUENT in JustificationSwitch
        public Test07(bool onoff, bool complete)
            : base(onoff, complete)
        {
            //Circle
            Point o = new Point("O", 0, 0); points.Add(o);
            Circle circleO = new Circle(o, 5.0);
            circles.Add(circleO);

            //Points for chord ab
            Point a = new Point("A", -3, 4); points.Add(a);
            Point b = new Point("B", 3, -4); points.Add(b);

            //Points for chord cd
            Point c = new Point("C", -3, -4); points.Add(c);
            Point d = new Point("D", 1, System.Math.Sqrt(24)); points.Add(d);

            //Find intersection point of ab and cd
            Segment ab = new Segment(a, b);
            Segment cd = new Segment(c, d);
            Point inter = ab.FindIntersection(cd);
            Point z = new Point("Z", inter.X, inter.Y); points.Add(z);

            List<Point> pnts = new List<Point>();
            pnts.Add(a);
            pnts.Add(z);
            pnts.Add(b);
            collinear.Add(new Collinear(pnts));

            pnts = new List<Point>();
            pnts.Add(c);
            pnts.Add(z);
            pnts.Add(d);
            collinear.Add(new Collinear(pnts));

            parser = new LiveGeometry.TutorParser.HardCodedParserMain(points, collinear, segments, circles, onoff);

            goals.Add(new GeometricCongruentAngles((Angle)parser.Get(new Angle(a, z, d)), (Angle)parser.Get(new Angle(c, z, b))));
            goals.Add(new GeometricCongruentAngles((Angle)parser.Get(new Angle(a, z, c)), (Angle)parser.Get(new Angle(b, z, d))));
        }
开发者ID:wcatykid,项目名称:GeoShader,代码行数:42,代码来源:Test07.cs

示例5: Page309Problem09

        //Demonstrates: Congruent chords have congruent arcs (and converse); arc addition axiom
        public Page309Problem09(bool onoff, bool complete)
            : base(onoff, complete)
        {
            Point o = new Point("O", 0, 0); points.Add(o);
            Point r = new Point("R", -3, 4); points.Add(r);
            Point s = new Point("S", 2, Math.Sqrt(21)); points.Add(s);
            Point t = new Point("T", 2, -Math.Sqrt(21)); points.Add(t);
            Point u = new Point("U", -3, -4); points.Add(u);

            Segment rt = new Segment(r, t);
            Segment su = new Segment(s, u);

            Point v = rt.FindIntersection(su); points.Add(v);

            Segment rs = new Segment(r, s); segments.Add(rs);
            Segment ut = new Segment(u, t); segments.Add(ut);

            List<Point> pnts = new List<Point>();
            pnts.Add(r);
            pnts.Add(v);
            pnts.Add(t);
            collinear.Add(new Collinear(pnts));

            pnts = new List<Point>();
            pnts.Add(s);
            pnts.Add(v);
            pnts.Add(u);
            collinear.Add(new Collinear(pnts));

            Circle c = new Circle(o, 5.0);
            circles.Add(c);

            parser = new GeometryTutorLib.TutorParser.HardCodedParserMain(points, collinear, segments, circles, onoff);

            given.Add(new GeometricCongruentSegments((Segment)parser.Get(new Segment(r, s)), (Segment)parser.Get(new Segment(u, t))));

            goals.Add(new GeometricCongruentSegments((Segment)parser.Get(new Segment(r, t)), (Segment)parser.Get(new Segment(u, s))));
        }
开发者ID:wcatykid,项目名称:GeoShader,代码行数:39,代码来源:Page309Problem09.cs

示例6: Test03

        //Demonstrates: Inscribed angle half measure of intercepted arc and transitive substitution
        public Test03(bool onoff, bool complete)
            : base(onoff, complete)
        {
            Point o = new Point("O", 0, 0); points.Add(o);
            Point r = new Point("R", -3, 4); points.Add(r);
            Point t = new Point("T", 3, 4); points.Add(t);
            Point v = new Point("V", -3, -4); points.Add(v);
            Point x = new Point("X", 0, -5); points.Add(x);

            Segment vr = new Segment(v, r); segments.Add(vr);
            Segment tx = new Segment(t, x); segments.Add(tx);

            Segment vt = new Segment(v, t);
            Segment rx = new Segment(r, x);
            Point i = vt.FindIntersection(rx);
            i = new Point("I", i.X, i.Y); points.Add(i);

            List<Point> pnts = new List<Point>();
            pnts.Add(v);
            pnts.Add(i);
            pnts.Add(o);
            pnts.Add(t);
            collinear.Add(new Collinear(pnts));

            pnts = new List<Point>();
            pnts.Add(x);
            pnts.Add(i);
            pnts.Add(r);
            collinear.Add(new Collinear(pnts));

            Circle c = new Circle(o, 5.0);
            circles.Add(c);

            parser = new GeometryTutorLib.TutorParser.HardCodedParserMain(points, collinear, segments, circles, onoff);

            goals.Add(new GeometricCongruentAngles((Angle)parser.Get(new Angle(i, v, r)), (Angle)parser.Get(new Angle(i, x, t))));
        }
开发者ID:wcatykid,项目名称:GeoShader,代码行数:38,代码来源:Test03.cs

示例7: Atomize

        public List<Area_Based_Analyses.Atomizer.AtomicRegion> Atomize(List<Point> figurePoints)
        {
            List<Segment> constructedChords = new List<Segment>();
            List<Segment> constructedRadii = new List<Segment>();
            List<Point> imagPoints = new List<Point>();

            List<Point> interPts = GetIntersectingPoints();

            //
            // Construct the radii
            //
            switch (interPts.Count)
            {
                // If there are no points of interest, the circle is the atomic region.
                case 0:
                  return Utilities.MakeList<AtomicRegion>(new ShapeAtomicRegion(this));

                // If only 1 intersection point, create the diameter.
                case 1:
                  Point opp = Utilities.AcquirePoint(figurePoints, this.OppositePoint(interPts[0]));
                  constructedRadii.Add(new Segment(center, interPts[0]));
                  constructedRadii.Add(new Segment(center, opp));
                  imagPoints.Add(opp);
                  interPts.Add(opp);
                  break;

                default:
                  foreach (Point interPt in interPts)
                  {
                      constructedRadii.Add(new Segment(center, interPt));
                  }
                  break;
            }

            //
            // Construct the chords
            //
            List<Segment> chords = new List<Segment>();
            for (int p1 = 0; p1 < interPts.Count - 1; p1++)
            {
                for (int p2 = p1 + 1; p2 < interPts.Count; p2++)
                {
                    Segment chord = new Segment(interPts[p1], interPts[p2]);
                    if (!DefinesDiameter(chord)) constructedChords.Add(chord);
                }
            }

            //
            // Do any of the created segments result in imaginary intersection points.
            //
            foreach (Segment chord in constructedChords)
            {
                foreach (Segment radius in constructedRadii)
                {
                    Point inter = Utilities.AcquireRestrictedPoint(figurePoints, chord.FindIntersection(radius), chord, radius);
                    if (inter != null)
                    {
                        chord.AddCollinearPoint(inter);
                        radius.AddCollinearPoint(inter);

                        // if (!Utilities.HasStructurally<Point>(figurePoints, inter)) imagPoints.Add(inter);
                        Utilities.AddUnique<Point>(imagPoints, inter);
                    }
                }
            }

            for (int c1 = 0; c1 < constructedChords.Count - 1; c1++)
            {
                for (int c2 = c1 + 1; c2 < constructedChords.Count; c2++)
                {
                    Point inter = constructedChords[c1].FindIntersection(constructedChords[c2]);
                    inter = Utilities.AcquireRestrictedPoint(figurePoints, inter, constructedChords[c1], constructedChords[c2]);
                    if (inter != null)
                    {
                        constructedChords[c1].AddCollinearPoint(inter);
                        constructedChords[c2].AddCollinearPoint(inter);

                        //if (!Utilities.HasStructurally<Point>(figurePoints, inter)) imagPoints.Add(inter);
                        Utilities.AddUnique<Point>(imagPoints, inter);
                    }
                }
            }

            //
            // Add all imaginary points to the list of figure points.
            //
            Utilities.AddUniqueList<Point>(figurePoints, imagPoints);

            //
            // Construct the Planar graph for atomic region identification.
            //
            Area_Based_Analyses.Atomizer.UndirectedPlanarGraph.PlanarGraph graph = new Area_Based_Analyses.Atomizer.UndirectedPlanarGraph.PlanarGraph();

            //
            // Add all imaginary points, intersection points, and center.
            //
            foreach (Point pt in imagPoints)
            {
                graph.AddNode(pt);
            }
//.........这里部分代码省略.........
开发者ID:wcatykid,项目名称:GeoShader,代码行数:101,代码来源:Circle.cs

示例8: IsSecant

        //
        // Determine if the segment passes through the circle (we know it is not a chord since they have been filtered).
        //
        private bool IsSecant(Segment segment, List<Point> figPoints, out Segment chord)
        {
            // Make it null and overwrite when necessary.
            chord = null;

            // Is the segment exterior to the circle, but intersects at an endpoint (and wasn't tangent).
            if (this.PointIsExterior(segment.Point1) && this.PointLiesOn(segment.Point2)) return false;
            if (this.PointIsExterior(segment.Point2) && this.PointLiesOn(segment.Point1)) return false;

            // Is one endpoint of the segment simply on the interior of the circle (so we have nothing)?
            if (this.PointIsInterior(segment.Point1) || this.PointIsInterior(segment.Point2)) return false;

            if (ContainsDiameter(segment))
            {
                chord = ConstructChord(segment, this.center, this.radius, figPoints);

                // Add radii to the list.
                radii.Add(new Segment(this.center, chord.Point1));
                radii.Add(new Segment(this.center, chord.Point2));

                return true;
            }

            // Acquire the line perpendicular to the segment that passes through the center of the circle.
            Segment perpendicular = segment.GetPerpendicular(this.center);

            // Is this perpendicular segment a radius? If so, it's tangent, not a secant
            //if (Utilities.CompareValues(perpendicular.Length, this.radius)) return false;

            // Is the perpendicular a radius? Check if the intersection of the segment and the perpendicular is on the circle. If so, it's tangent
            Point intersection = segment.FindIntersection(perpendicular);
            if (this.PointLiesOn(intersection)) return false;

            //Adjust perpendicular segment to include intersection with segment
            perpendicular = new Segment(intersection, this.center);

            // Filter the fact that there are no intersections
            if (perpendicular.Length > this.radius) return false;

            //            1/2 chord length
            //                 _____   circPoint
            //                |    /
            //                |   /
            // perp.Length    |  / radius
            //                | /
            //                |/
            // Determine the half-chord length via Pyhtagorean Theorem.
            double halfChordLength = Math.Sqrt(Math.Pow(this.radius, 2) - Math.Pow(perpendicular.Length, 2));

            chord = ConstructChord(segment, perpendicular.OtherPoint(this.center), halfChordLength, figPoints);

            return true;
        }
开发者ID:wcatykid,项目名称:GeoShader,代码行数:56,代码来源:Circle.cs

示例9: Midpoint

        // return the midpoint between these two on the circle.
        public Point Midpoint(Point a, Point b, Point sameSide)
        {
            Point midpt = Midpoint(a, b);

            Segment segment = new Segment(a, b);
            Segment other = new Segment(midpt, sameSide);

            Point intersection = segment.FindIntersection(other);

            if (Segment.Between(intersection, midpt, sameSide)) return this.OppositePoint(midpt);

            return midpt;
        }
开发者ID:wcatykid,项目名称:GeoShader,代码行数:14,代码来源:Circle.cs

示例10: IsTangent

        //
        // Determine tangency of the given segment.
        // Indicate tangency by returning the segment which creates the 90^0 angle.
        //
        public Segment IsTangent(Segment segment)
        {
            // If the center and the segment points are collinear, this will not be a tangent.
            if (segment.PointLiesOn(this.center)) return null;

            // Acquire the line perpendicular to the segment that passes through the center of the circle.
            Segment perpendicular = segment.GetPerpendicular(this.center);

            // If the segment was found to pass through the center, it is not a tangent
            if (perpendicular.Equals(segment)) return null;

            // Is this perpendicular segment a radius? Check length
            //if (!Utilities.CompareValues(perpendicular.Length, this.radius)) return null;

            // Is the perpendicular a radius? Check that the intersection of the segment and the perpendicular is on the circle
            Point intersection = segment.FindIntersection(perpendicular);
            if (!this.PointLiesOn(intersection)) return null;

            // The intersection between the perpendicular and the segment must be within the endpoints of the segment.
            return segment.PointLiesOnAndBetweenEndpoints(intersection) ? perpendicular : null;
        }
开发者ID:wcatykid,项目名称:GeoShader,代码行数:25,代码来源:Circle.cs

示例11: IntersectAtSamePoint

        public static bool IntersectAtSamePoint(Segment seg1, Segment seg2, Segment seg3)
        {
            Point intersection1 = seg1.FindIntersection(seg3);
            Point intersection2 = seg2.FindIntersection(seg3);

            return intersection1.Equals(intersection2);
        }
开发者ID:wcatykid,项目名称:GeoShader,代码行数:7,代码来源:Segment.cs

示例12: ConvertToCircleCircle

        //
        // This is a complex situation because we need to identify situations where circles intersect with the resultant regions:
        //    (|     (|)
        //   ( |    ( | )
        //  (  |   (  |  )
        //   ( |    ( | )
        //    (|     (|)
        //
        // Note: There will always be a chord because of our implied construction.
        // We are interested in only minor arcs of the given circles.
        //
        private List<Atomizer.AtomicRegion> ConvertToCircleCircle(Segment chord,
                                                                  List<Circle> circles,
                                                                  out Circle leftOuterCircle,
                                                                  out Circle rightOuterCircle)
        {
            List<Atomizer.AtomicRegion> regions = new List<Atomizer.AtomicRegion>();
            leftOuterCircle = null;
            rightOuterCircle = null;

            //
            // Simple cases that require no special attention.
            //
            if (!circles.Any()) return null;
            if (circles.Count == 1)
            {
                leftOuterCircle = circles[0];

                regions.AddRange(ConstructBasicLineCircleRegion(chord, circles[0]));

                return regions;
            }

            // All circles that are on each side of the chord
            List<Circle> leftSide = new List<Circle>();
            List<Circle> rightSide = new List<Circle>();

            // For now, assume max, one circle per side.
            // Construct a collinear list of points that includes all circle centers as well as the single intersection point between the chord and the line passing through all circle centers.
            // This orders the sides and provides implied sizes.

            Segment centerLine = new Segment(circles[0].center, circles[1].center);
            for (int c = 2; c < circles.Count; c++)
            {
                centerLine.AddCollinearPoint(circles[c].center);
            }
            // Find the intersection between the center-line and the chord; add that to the list.
            Point intersection = centerLine.FindIntersection(chord);
            centerLine.AddCollinearPoint(intersection);

            List<Point> collPoints = centerLine.collinear;
            int interIndex = collPoints.IndexOf(intersection);

            for (int i = 0; i < collPoints.Count; i++)
            {
                // find the circle based on center
                int c;
                for (c = 0; c < circles.Count; c++)
                {
                    if (circles[c].center.StructurallyEquals(collPoints[i])) break;
                }

                // Add the circle in order
                if (i < interIndex) leftSide.Add(circles[c]);
                else if (i > interIndex) rightSide.Add(circles[c]);
            }

            // the outermost circle is first in the left list and last in the right list.
            if (leftSide.Any()) leftOuterCircle = leftSide[0];
            if (rightSide.Any()) rightOuterCircle = rightSide[rightSide.Count - 1];

            //
            // Main combining algorithm:
            //     Assume: Increasing Arc sequence A \in A_1, A_2, ..., A_n and the single chord C
            //
            //     Construct region B = (C, A_1)
            //     For the increasing Arc sequence (k subscript)  A_2, A_3, ..., A_n
            //         B = Construct ((C, A_k) \ B)
            //
            // Alternatively:
            //     Construct(C, A_1)
            //     for each pair Construct (A_k, A_{k+1})
            //
            //
            // Handle each side: left and right.
            //
            if (leftSide.Any()) regions.AddRange(ConstructBasicLineCircleRegion(chord, leftSide[leftSide.Count - 1]));
            for (int ell = 0; ell < leftSide.Count - 2; ell++)
            {
                regions.Add(ConstructBasicCircleCircleRegion(chord, leftSide[ell], leftSide[ell + 1]));
            }

            if (rightSide.Any()) regions.AddRange(ConstructBasicLineCircleRegion(chord, rightSide[0]));
            for (int r = 1; r < rightSide.Count - 1; r++)
            {
                regions.Add(ConstructBasicCircleCircleRegion(chord, rightSide[r], rightSide[r + 1]));
            }

            return regions;
        }
开发者ID:wcatykid,项目名称:GeoShader,代码行数:100,代码来源:MinimalCycle.cs


注:本文中的GeometryTutorLib.ConcreteAST.Segment.FindIntersection方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。