当前位置: 首页>>代码示例>>C#>>正文


C# Segment.IsCollinearWith方法代码示例

本文整理汇总了C#中GeometryTutorLib.ConcreteAST.Segment.IsCollinearWith方法的典型用法代码示例。如果您正苦于以下问题:C# Segment.IsCollinearWith方法的具体用法?C# Segment.IsCollinearWith怎么用?C# Segment.IsCollinearWith使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GeometryTutorLib.ConcreteAST.Segment的用法示例。


在下文中一共展示了Segment.IsCollinearWith方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: CoordinateAngleBisector

        public bool CoordinateAngleBisector(Segment thatSegment)
        {
            if (!thatSegment.PointLiesOnAndBetweenEndpoints(this.GetVertex())) return false;

            if (thatSegment.IsCollinearWith(this.ray1) || thatSegment.IsCollinearWith(this.ray2)) return false;

            Point interiorPoint = this.IsOnInteriorExplicitly(thatSegment.Point1) ? thatSegment.Point1 : thatSegment.Point2;
            if (!this.IsOnInteriorExplicitly(interiorPoint)) return false;

            Angle angle1 = new Angle(A, GetVertex(), interiorPoint);
            Angle angle2 = new Angle(C, GetVertex(), interiorPoint);

            return Utilities.CompareValues(angle1.measure, angle2.measure);
        }
开发者ID:wcatykid,项目名称:GeoShader,代码行数:14,代码来源:Angle.cs

示例2: InstantiateToDef

        //
        // Construct the AngleBisector if we have
        //
        //      V---------------A
        //     / \
        //    /   \
        //   /     \
        //  B       C
        //
        // Congruent(Angle, A, V, C), Angle(C, V, B)),  Segment(V, C)) -> AngleBisector(Angle(A, V, B)
        //
        //
        private static List<EdgeAggregator> InstantiateToDef(CongruentAngles cas, Segment segment)
        {
            List<EdgeAggregator> newGrounded = new List<EdgeAggregator>();

            // Find the shared segment between the two angles; we know it is valid if we reach this point
            Segment shared = cas.AreAdjacent();

            // The bisector must align with the given segment
            if (!segment.IsCollinearWith(shared)) return newGrounded;

            // We need a true bisector in which the shared vertex of the angles in between the endpoints of this segment
            if (!segment.PointLiesOnAndBetweenEndpoints(cas.ca1.GetVertex())) return newGrounded;

            //
            // Create the overall angle which is being bisected
            //
            Point vertex = cas.ca1.GetVertex();
            Segment newRay1 = cas.ca1.OtherRayEquates(shared);
            Segment newRay2 = cas.ca2.OtherRayEquates(shared);
            Angle combinedAngle = new Angle(newRay1.OtherPoint(vertex), vertex, newRay2.OtherPoint(vertex));

            // Determine if the segment is a straight angle (we don't want an angle bisector here, we would want a segment bisector)
            if (newRay1.IsCollinearWith(newRay2)) return newGrounded;

            // The bisector cannot be of the form:
            //    \
            //     \
            //      V---------------A
            //     /
            //    /
            //   B
            if (!combinedAngle.IsOnInteriorExplicitly(segment.Point1) && !combinedAngle.IsOnInteriorExplicitly(segment.Point2)) return newGrounded;

            AngleBisector newAB = new AngleBisector(combinedAngle, segment);

            // For hypergraph
            List<GroundedClause> antecedent = new List<GroundedClause>();
            antecedent.Add(segment);
            antecedent.Add(cas);

            newGrounded.Add(new EdgeAggregator(antecedent, newAB, annotation));
            return newGrounded;
        }
开发者ID:wcatykid,项目名称:GeoShader,代码行数:55,代码来源:AngleBisectorDefinition.cs

示例3: MixedArcChordedRegion

        private List<Atomizer.AtomicRegion> MixedArcChordedRegion(List<Circle> thatCircles, UndirectedPlanarGraph.PlanarGraph graph)
        {
            List<AtomicRegion> regions = new List<AtomicRegion>();

            // Every segment may be have a set of circles. (on each side) surrounding it.
            // Keep parallel lists of: (1) segments, (2) (real) arcs, (3) left outer circles, and (4) right outer circles
            Segment[] regionsSegments = new Segment[points.Count];
            Arc[] arcSegments = new Arc[points.Count];
            Circle[] leftOuterCircles = new Circle[points.Count];
            Circle[] rightOuterCircles = new Circle[points.Count];

            //
            // Populate the parallel arrays.
            //
            int currCounter = 0;
            for (int p = 0; p < points.Count; )
            {
                UndirectedPlanarGraph.PlanarGraphEdge edge = graph.GetEdge(points[p], points[(p + 1) % points.Count]);
                Segment currSegment = new Segment(points[p], points[(p + 1) % points.Count]);

                //
                // If a known segment, seek a sequence of collinear segments.
                //
                if (edge.edgeType == UndirectedPlanarGraph.EdgeType.REAL_SEGMENT)
                {
                    Segment actualSeg = currSegment;

                    bool collinearExists = false;
                    int prevPtIndex;
                    for (prevPtIndex = p + 1; prevPtIndex < points.Count; prevPtIndex++)
                    {
                        // Make another segment with the next point.
                        Segment nextSeg = new Segment(points[p], points[(prevPtIndex + 1) % points.Count]);

                        // CTA: This criteria seems invalid in some cases....; may not have collinearity

                        // We hit the end of the line of collinear segments.
                        if (!currSegment.IsCollinearWith(nextSeg)) break;

                        collinearExists = true;
                        actualSeg = nextSeg;
                    }

                    // If there exists an arc over the actual segment, we have an embedded circle to consider.
                    regionsSegments[currCounter] = actualSeg;

                    if (collinearExists)
                    {
                        UndirectedPlanarGraph.PlanarGraphEdge collEdge = graph.GetEdge(actualSeg.Point1, actualSeg.Point2);
                        if (collEdge != null)
                        {
                            if (collEdge.edgeType == UndirectedPlanarGraph.EdgeType.REAL_ARC)
                            {
                                // Find all applicable circles
                                List<Circle> circles = GetAllApplicableCircles(thatCircles, actualSeg.Point1, actualSeg.Point2);

                                // Get the exact outer circles for this segment (and create any embedded regions).
                                regions.AddRange(ConvertToCircleCircle(actualSeg, circles, out leftOuterCircles[currCounter], out rightOuterCircles[currCounter]));
                            }
                        }
                    }

                    currCounter++;
                    p = prevPtIndex;
                }
                else if (edge.edgeType == UndirectedPlanarGraph.EdgeType.REAL_DUAL)
                {
                    regionsSegments[currCounter] = new Segment(points[p], points[(p + 1) % points.Count]);

                    // Get the exact chord and set of circles
                    Segment chord = regionsSegments[currCounter];

                    // Find all applicable circles
                    List<Circle> circles = GetAllApplicableCircles(thatCircles, points[p], points[(p + 1) % points.Count]);

                    // Get the exact outer circles for this segment (and create any embedded regions).
                    regions.AddRange(ConvertToCircleCircle(chord, circles, out leftOuterCircles[currCounter], out rightOuterCircles[currCounter]));

                    currCounter++;
                    p++;
                }
                else if (edge.edgeType == UndirectedPlanarGraph.EdgeType.REAL_ARC)
                {
                    //
                    // Find the unique circle that contains these two points.
                    // (if more than one circle has these points, we would have had more intersections and it would be a direct chorded region)
                    //
                    List<Circle> circles = GetAllApplicableCircles(thatCircles, points[p], points[(p + 1) % points.Count]);

                    if (circles.Count != 1) throw new Exception("Need ONLY 1 circle for REAL_ARC atom id; found (" + circles.Count + ")");

                    arcSegments[currCounter++] = new MinorArc(circles[0], points[p], points[(p + 1) % points.Count]);

                    p++;
                }
            }

            //
            // Check to see if this is a region in which some connections are segments and some are arcs.
            // This means there were no REAL_DUAL edges.
//.........这里部分代码省略.........
开发者ID:wcatykid,项目名称:GeoShader,代码行数:101,代码来源:MinimalCycle.cs


注:本文中的GeometryTutorLib.ConcreteAST.Segment.IsCollinearWith方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。