当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.Subtract方法代码示例

本文整理汇总了C#中BitcoinKit.BouncyCastle.Math.BigInteger.Subtract方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.Subtract方法的具体用法?C# BigInteger.Subtract怎么用?C# BigInteger.Subtract使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在BitcoinKit.BouncyCastle.Math.BigInteger的用法示例。


在下文中一共展示了BigInteger.Subtract方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: CreateRandomInRange

        /**
        * Return a random BigInteger not less than 'min' and not greater than 'max'
        *
        * @param min the least value that may be generated
        * @param max the greatest value that may be generated
        * @param random the source of randomness
        * @return a random BigInteger value in the range [min,max]
        */
        public static BigInteger CreateRandomInRange(
            BigInteger		min,
            BigInteger		max,
            // TODO Should have been just Random class
            SecureRandom	random)
        {
            int cmp = min.CompareTo(max);
            if (cmp >= 0)
            {
                if (cmp > 0)
                    throw new ArgumentException("'min' may not be greater than 'max'");

                return min;
            }

            if (min.BitLength > max.BitLength / 2)
            {
                return CreateRandomInRange(BigInteger.Zero, max.Subtract(min), random).Add(min);
            }

            for (int i = 0; i < MaxIterations; ++i)
            {
                BigInteger x = new BigInteger(max.BitLength, random);
                if (x.CompareTo(min) >= 0 && x.CompareTo(max) <= 0)
                {
                    return x;
                }
            }

            // fall back to a faster (restricted) method
            return new BigInteger(max.Subtract(min).BitLength - 1, random).Add(min);
        }
开发者ID:bitcoinkit,项目名称:BitcoinKit-CSharp,代码行数:40,代码来源:BigIntegers.cs

示例2: GeneratePrivateKey

        private static BigInteger GeneratePrivateKey(BigInteger q, SecureRandom random)
        {
            // B.1.2 Key Pair Generation by Testing Candidates
            int minWeight = q.BitLength >> 2;
            for (;;)
            {
                // TODO Prefer this method? (change test cases that used fixed random)
                // B.1.1 Key Pair Generation Using Extra Random Bits
                //BigInteger x = new BigInteger(q.BitLength + 64, random).Mod(q.Subtract(One)).Add(One);

                BigInteger x = BigIntegers.CreateRandomInRange(One, q.Subtract(One), random);
                if (WNafUtilities.GetNafWeight(x) >= minWeight)
                {
                    return x;
                }
            }
        }
开发者ID:bitcoinkit,项目名称:BitcoinKit-CSharp,代码行数:17,代码来源:DsaKeyPairGenerator.cs

示例3: DHParameters

        public DHParameters(
            BigInteger				p,
            BigInteger				g,
            BigInteger				q,
            int						m,
            int						l,
            BigInteger				j,
            DHValidationParameters	validation)
        {
            if (p == null)
                throw new ArgumentNullException("p");
            if (g == null)
                throw new ArgumentNullException("g");
            if (!p.TestBit(0))
                throw new ArgumentException("field must be an odd prime", "p");
            if (g.CompareTo(BigInteger.Two) < 0
                || g.CompareTo(p.Subtract(BigInteger.Two)) > 0)
                throw new ArgumentException("generator must in the range [2, p - 2]", "g");
            if (q != null && q.BitLength >= p.BitLength)
                throw new ArgumentException("q too big to be a factor of (p-1)", "q");
            if (m >= p.BitLength)
                throw new ArgumentException("m value must be < bitlength of p", "m");
            if (l != 0)
            {
                if (l >= p.BitLength)
                    throw new ArgumentException("when l value specified, it must be less than bitlength(p)", "l");
                if (l < m)
                    throw new ArgumentException("when l value specified, it may not be less than m value", "l");
            }
            if (j != null && j.CompareTo(BigInteger.Two) < 0)
                throw new ArgumentException("subgroup factor must be >= 2", "j");

            // TODO If q, j both provided, validate p = jq + 1 ?

            this.p = p;
            this.g = g;
            this.q = q;
            this.m = m;
            this.l = l;
            this.j = j;
            this.validation = validation;
        }
开发者ID:bitcoinkit,项目名称:BitcoinKit-CSharp,代码行数:42,代码来源:DHParameters.cs

示例4: VerifySignature

        // Section 7.2.6 ECVP-NR, pg 35
        /**
         * return true if the value r and s represent a signature for the
         * message passed in. Generally, the order of the curve should be at
         * least as long as the hash of the message of interest, and with
         * ECNR, it *must* be at least as long.  But just in case the signer
         * applied mod(n) to the longer digest, this implementation will
         * apply mod(n) during verification.
         *
         * @param digest  the digest to be verified.
         * @param r       the r value of the signature.
         * @param s       the s value of the signature.
         * @exception DataLengthException if the digest is longer than the key allows
         */
        public bool VerifySignature(
            byte[]		message,
            BigInteger	r,
            BigInteger	s)
        {
            if (this.forSigning)
            {
                // not properly initilaized... deal with it
                throw new InvalidOperationException("not initialised for verifying");
            }

            ECPublicKeyParameters pubKey = (ECPublicKeyParameters)key;
            BigInteger n = pubKey.Parameters.N;
            int nBitLength = n.BitLength;

            BigInteger e = new BigInteger(1, message);
            int eBitLength = e.BitLength;

            if (eBitLength > nBitLength)
            {
                throw new DataLengthException("input too large for ECNR key.");
            }

            // r in the range [1,n-1]
            if (r.CompareTo(BigInteger.One) < 0 || r.CompareTo(n) >= 0)
            {
                return false;
            }

            // s in the range [0,n-1]           NB: ECNR spec says 0
            if (s.CompareTo(BigInteger.Zero) < 0 || s.CompareTo(n) >= 0)
            {
                return false;
            }

            // compute P = sG + rW

            ECPoint G = pubKey.Parameters.G;
            ECPoint W = pubKey.Q;
            // calculate P using Bouncy math
            ECPoint P = ECAlgorithms.SumOfTwoMultiplies(G, s, W, r).Normalize();

            if (P.IsInfinity)
                return false;

            BigInteger x = P.AffineXCoord.ToBigInteger();
            BigInteger t = r.Subtract(x).Mod(n);

            return t.Equals(e);
        }
开发者ID:bitcoinkit,项目名称:BitcoinKit-CSharp,代码行数:64,代码来源:ECNRSigner.cs

示例5: procedure_C

        /**
         * Procedure C
         * procedure generates the a value from the given p,q,
         * returning the a value.
         */
        private BigInteger procedure_C(BigInteger p, BigInteger q)
        {
            BigInteger pSub1 = p.Subtract(BigInteger.One);
            BigInteger pSub1Divq = pSub1.Divide(q);

            for(;;)
            {
                BigInteger d = new BigInteger(p.BitLength, init_random);

                // 1 < d < p-1
                if (d.CompareTo(BigInteger.One) > 0 && d.CompareTo(pSub1) < 0)
                {
                    BigInteger a = d.ModPow(pSub1Divq, p);

                    if (a.CompareTo(BigInteger.One) != 0)
                    {
                        return a;
                    }
                }
            }
        }
开发者ID:bitcoinkit,项目名称:BitcoinKit-CSharp,代码行数:26,代码来源:GOST3410ParametersGenerator.cs

示例6: ChooseRandomPrime

        /// <summary>Choose a random prime value for use with RSA</summary>
        /// <param name="bitlength">the bit-length of the returned prime</param>
        /// <param name="e">the RSA public exponent</param>
        /// <returns>a prime p, with (p-1) relatively prime to e</returns>
        protected virtual BigInteger ChooseRandomPrime(int bitlength, BigInteger e)
        {
            for (;;)
            {
                BigInteger p = new BigInteger(bitlength, 1, param.Random);

                if (p.Mod(e).Equals(BigInteger.One))
                    continue;

                if (!p.IsProbablePrime(param.Certainty))
                    continue;

                if (!e.Gcd(p.Subtract(BigInteger.One)).Equals(BigInteger.One))
                    continue;

                return p;
            }
        }
开发者ID:bitcoinkit,项目名称:BitcoinKit-CSharp,代码行数:22,代码来源:RsaKeyPairGenerator.cs

示例7: SelectGenerator

        /*
         * Select a high order element of the multiplicative group Zp*
         *
         * p and q must be s.t. p = 2*q + 1, where p and q are prime (see generateSafePrimes)
         */
        internal static BigInteger SelectGenerator(BigInteger p, BigInteger q, SecureRandom random)
        {
            BigInteger pMinusTwo = p.Subtract(BigInteger.Two);
            BigInteger g;

            /*
             * (see: Handbook of Applied Cryptography 4.80)
             */
            //			do
            //			{
            //				g = BigIntegers.CreateRandomInRange(BigInteger.Two, pMinusTwo, random);
            //			}
            //			while (g.ModPow(BigInteger.Two, p).Equals(BigInteger.One)
            //				|| g.ModPow(q, p).Equals(BigInteger.One));

            /*
             * RFC 2631 2.2.1.2 (and see: Handbook of Applied Cryptography 4.81)
             */
            do
            {
                BigInteger h = BigIntegers.CreateRandomInRange(BigInteger.Two, pMinusTwo, random);

                g = h.ModPow(BigInteger.Two, p);
            }
            while (g.Equals(BigInteger.One));

            return g;
        }
开发者ID:bitcoinkit,项目名称:BitcoinKit-CSharp,代码行数:33,代码来源:DHParametersHelper.cs

示例8: Add

        public BigInteger Add(
            BigInteger value)
        {
            if (this.sign == 0)
                return value;

            if (this.sign != value.sign)
            {
                if (value.sign == 0)
                    return this;

                if (value.sign < 0)
                    return Subtract(value.Negate());

                return value.Subtract(Negate());
            }

            return AddToMagnitude(value.magnitude);
        }
开发者ID:bitcoinkit,项目名称:BitcoinKit-CSharp,代码行数:19,代码来源:BigInteger.cs

示例9: ReduceBarrett

        private static BigInteger ReduceBarrett(BigInteger x, BigInteger m, BigInteger mr, BigInteger yu)
        {
            int xLen = x.BitLength, mLen = m.BitLength;
            if (xLen < mLen)
                return x;

            if (xLen - mLen > 1)
            {
                int k = m.magnitude.Length;

                BigInteger q1 = x.DivideWords(k - 1);
                BigInteger q2 = q1.Multiply(yu); // TODO Only need partial multiplication here
                BigInteger q3 = q2.DivideWords(k + 1);

                BigInteger r1 = x.RemainderWords(k + 1);
                BigInteger r2 = q3.Multiply(m); // TODO Only need partial multiplication here
                BigInteger r3 = r2.RemainderWords(k + 1);

                x = r1.Subtract(r3);
                if (x.sign < 0)
                {
                    x = x.Add(mr);
                }
            }

            while (x.CompareTo(m) >= 0)
            {
                x = x.Subtract(m);
            }

            return x;
        }
开发者ID:bitcoinkit,项目名称:BitcoinKit-CSharp,代码行数:32,代码来源:BigInteger.cs


注:本文中的BitcoinKit.BouncyCastle.Math.BigInteger.Subtract方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。