本文整理汇总了C#中BitcoinKit.BouncyCastle.Math.BigInteger.CompareTo方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.CompareTo方法的具体用法?C# BigInteger.CompareTo怎么用?C# BigInteger.CompareTo使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BitcoinKit.BouncyCastle.Math.BigInteger
的用法示例。
在下文中一共展示了BigInteger.CompareTo方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: CreateRandomInRange
/**
* Return a random BigInteger not less than 'min' and not greater than 'max'
*
* @param min the least value that may be generated
* @param max the greatest value that may be generated
* @param random the source of randomness
* @return a random BigInteger value in the range [min,max]
*/
public static BigInteger CreateRandomInRange(
BigInteger min,
BigInteger max,
// TODO Should have been just Random class
SecureRandom random)
{
int cmp = min.CompareTo(max);
if (cmp >= 0)
{
if (cmp > 0)
throw new ArgumentException("'min' may not be greater than 'max'");
return min;
}
if (min.BitLength > max.BitLength / 2)
{
return CreateRandomInRange(BigInteger.Zero, max.Subtract(min), random).Add(min);
}
for (int i = 0; i < MaxIterations; ++i)
{
BigInteger x = new BigInteger(max.BitLength, random);
if (x.CompareTo(min) >= 0 && x.CompareTo(max) <= 0)
{
return x;
}
}
// fall back to a faster (restricted) method
return new BigInteger(max.Subtract(min).BitLength - 1, random).Add(min);
}
示例2: Gost3410PublicKeyParameters
public Gost3410PublicKeyParameters(
BigInteger y,
DerObjectIdentifier publicKeyParamSet)
: base(false, publicKeyParamSet)
{
if (y.SignValue < 1 || y.CompareTo(Parameters.P) >= 0)
throw new ArgumentException("Invalid y for GOST3410 public key", "y");
this.y = y;
}
示例3: Gost3410PrivateKeyParameters
public Gost3410PrivateKeyParameters(
BigInteger x,
DerObjectIdentifier publicKeyParamSet)
: base(true, publicKeyParamSet)
{
if (x.SignValue < 1 || x.BitLength > 256 || x.CompareTo(Parameters.Q) >= 0)
throw new ArgumentException("Invalid x for GOST3410 private key", "x");
this.x = x;
}
示例4: DHParameters
public DHParameters(
BigInteger p,
BigInteger g,
BigInteger q,
int m,
int l,
BigInteger j,
DHValidationParameters validation)
{
if (p == null)
throw new ArgumentNullException("p");
if (g == null)
throw new ArgumentNullException("g");
if (!p.TestBit(0))
throw new ArgumentException("field must be an odd prime", "p");
if (g.CompareTo(BigInteger.Two) < 0
|| g.CompareTo(p.Subtract(BigInteger.Two)) > 0)
throw new ArgumentException("generator must in the range [2, p - 2]", "g");
if (q != null && q.BitLength >= p.BitLength)
throw new ArgumentException("q too big to be a factor of (p-1)", "q");
if (m >= p.BitLength)
throw new ArgumentException("m value must be < bitlength of p", "m");
if (l != 0)
{
if (l >= p.BitLength)
throw new ArgumentException("when l value specified, it must be less than bitlength(p)", "l");
if (l < m)
throw new ArgumentException("when l value specified, it may not be less than m value", "l");
}
if (j != null && j.CompareTo(BigInteger.Two) < 0)
throw new ArgumentException("subgroup factor must be >= 2", "j");
// TODO If q, j both provided, validate p = jq + 1 ?
this.p = p;
this.g = g;
this.q = q;
this.m = m;
this.l = l;
this.j = j;
this.validation = validation;
}
示例5: GenerateKeyPair
/**
* Given the domain parameters this routine generates an EC key
* pair in accordance with X9.62 section 5.2.1 pages 26, 27.
*/
public AsymmetricCipherKeyPair GenerateKeyPair()
{
BigInteger n = parameters.N;
BigInteger d;
int minWeight = n.BitLength >> 2;
for (;;)
{
d = new BigInteger(n.BitLength, random);
if (d.CompareTo(BigInteger.Two) < 0 || d.CompareTo(n) >= 0)
continue;
/*
* Require a minimum weight of the NAF representation, since low-weight primes may be
* weak against a version of the number-field-sieve for the discrete-logarithm-problem.
*
* See "The number field sieve for integers of low weight", Oliver Schirokauer.
*/
if (WNafUtilities.GetNafWeight(d) < minWeight)
continue;
break;
}
ECPoint q = CreateBasePointMultiplier().Multiply(parameters.G, d);
if (publicKeyParamSet != null)
{
return new AsymmetricCipherKeyPair(
new ECPublicKeyParameters(algorithm, q, publicKeyParamSet),
new ECPrivateKeyParameters(algorithm, d, publicKeyParamSet));
}
return new AsymmetricCipherKeyPair(
new ECPublicKeyParameters(algorithm, q, parameters),
new ECPrivateKeyParameters(algorithm, d, parameters));
}
示例6: ConvertInput
public BigInteger ConvertInput(
byte[] inBuf,
int inOff,
int inLen)
{
int maxLength = (bitSize + 7) / 8;
if (inLen > maxLength)
throw new DataLengthException("input too large for RSA cipher.");
BigInteger input = new BigInteger(1, inBuf, inOff, inLen);
if (input.CompareTo(key.Modulus) >= 0)
throw new DataLengthException("input too large for RSA cipher.");
return input;
}
示例7: GenerateKeyPair
public AsymmetricCipherKeyPair GenerateKeyPair()
{
SecureRandom random = param.Random;
Gost3410Parameters gost3410Params = param.Parameters;
BigInteger q = gost3410Params.Q, x;
int minWeight = 64;
for (;;)
{
x = new BigInteger(256, random);
if (x.SignValue < 1 || x.CompareTo(q) >= 0)
continue;
/*
* Require a minimum weight of the NAF representation, since low-weight primes may be
* weak against a version of the number-field-sieve for the discrete-logarithm-problem.
*
* See "The number field sieve for integers of low weight", Oliver Schirokauer.
*/
if (WNafUtilities.GetNafWeight(x) < minWeight)
continue;
break;
}
BigInteger p = gost3410Params.P;
BigInteger a = gost3410Params.A;
// calculate the public key.
BigInteger y = a.ModPow(x, p);
if (param.PublicKeyParamSet != null)
{
return new AsymmetricCipherKeyPair(
new Gost3410PublicKeyParameters(y, param.PublicKeyParamSet),
new Gost3410PrivateKeyParameters(x, param.PublicKeyParamSet));
}
return new AsymmetricCipherKeyPair(
new Gost3410PublicKeyParameters(y, gost3410Params),
new Gost3410PrivateKeyParameters(x, gost3410Params));
}
示例8: procedure_C
/**
* Procedure C
* procedure generates the a value from the given p,q,
* returning the a value.
*/
private BigInteger procedure_C(BigInteger p, BigInteger q)
{
BigInteger pSub1 = p.Subtract(BigInteger.One);
BigInteger pSub1Divq = pSub1.Divide(q);
for(;;)
{
BigInteger d = new BigInteger(p.BitLength, init_random);
// 1 < d < p-1
if (d.CompareTo(BigInteger.One) > 0 && d.CompareTo(pSub1) < 0)
{
BigInteger a = d.ModPow(pSub1Divq, p);
if (a.CompareTo(BigInteger.One) != 0)
{
return a;
}
}
}
}
示例9: Derivate
internal static PublicKey Derivate(this PublicKey publicKey, byte[] cc, uint nChild, Network network, out byte[] ccChild)
{
byte[] lr = null;
byte[] l = new byte[32];
byte[] r = new byte[32];
if ((nChild >> 31) == 0)
{
var pubKey = publicKey.ToBytes();
lr = Hashes.BIP32Hash(cc, nChild, pubKey[0], pubKey.Skip(1).ToArray());
}
else
{
throw new InvalidOperationException("A public key can't derivate an hardened child");
}
Array.Copy(lr, l, 32);
Array.Copy(lr, 32, r, 0, 32);
ccChild = r;
BigInteger N = ECHelper.CURVE.N;
BigInteger parse256LL = new BigInteger(1, l);
if (parse256LL.CompareTo(N) >= 0)
throw new InvalidOperationException("You won a prize ! this should happen very rarely. Take a screenshot, and roll the dice again.");
var eq = ECHelper.Secp256k1.Curve.DecodePoint(publicKey.ToBytes());
var publicKeyParameters = new ECPublicKeyParameters("EC", eq, ECHelper.DomainParameter);
var q = ECHelper.CURVE.G.Multiply(parse256LL).Add(publicKeyParameters.Q);
if (q.IsInfinity)
throw new InvalidOperationException("You won the big prize ! this would happen only 1 in 2^127. Take a screenshot, and roll the dice again.");
var p = new BitcoinKit.BouncyCastle.Math.EC.FpPoint(ECHelper.CURVE.Curve, q.X, q.Y, true);
return new PublicKey(p.GetEncoded(), network);
}
示例10: ReduceBarrett
private static BigInteger ReduceBarrett(BigInteger x, BigInteger m, BigInteger mr, BigInteger yu)
{
int xLen = x.BitLength, mLen = m.BitLength;
if (xLen < mLen)
return x;
if (xLen - mLen > 1)
{
int k = m.magnitude.Length;
BigInteger q1 = x.DivideWords(k - 1);
BigInteger q2 = q1.Multiply(yu); // TODO Only need partial multiplication here
BigInteger q3 = q2.DivideWords(k + 1);
BigInteger r1 = x.RemainderWords(k + 1);
BigInteger r2 = q3.Multiply(m); // TODO Only need partial multiplication here
BigInteger r3 = r2.RemainderWords(k + 1);
x = r1.Subtract(r3);
if (x.sign < 0)
{
x = x.Add(mr);
}
}
while (x.CompareTo(m) >= 0)
{
x = x.Subtract(m);
}
return x;
}
示例11: VerifySignature
// 5.4 pg 29
/**
* return true if the value r and s represent a DSA signature for
* the passed in message (for standard DSA the message should be
* a SHA-1 hash of the real message to be verified).
*/
public virtual bool VerifySignature(byte[] message, BigInteger r, BigInteger s)
{
BigInteger n = key.Parameters.N;
// r and s should both in the range [1,n-1]
if (r.SignValue < 1 || s.SignValue < 1
|| r.CompareTo(n) >= 0 || s.CompareTo(n) >= 0)
{
return false;
}
BigInteger e = CalculateE(n, message);
BigInteger c = s.ModInverse(n);
BigInteger u1 = e.Multiply(c).Mod(n);
BigInteger u2 = r.Multiply(c).Mod(n);
ECPoint G = key.Parameters.G;
ECPoint Q = ((ECPublicKeyParameters) key).Q;
ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2).Normalize();
if (point.IsInfinity)
return false;
BigInteger v = point.AffineXCoord.ToBigInteger().Mod(n);
return v.Equals(r);
}
示例12: setPrivateKey
/**
* Set the private key.
*
* @param p key parameter: field modulus
* @param q key parameter: subgroup order
* @param g key parameter: generator
* @param x private key
*/
public void setPrivateKey(BigInteger p, BigInteger q,
BigInteger g, BigInteger x)
{
/*
* Perform some basic sanity checks. We do not
* check primality of p or q because that would
* be too expensive.
*
* We reject keys where q is longer than 999 bits,
* because it would complicate signature encoding.
* Normal DSA keys do not have a q longer than 256
* bits anyway.
*/
if(p == null || q == null || g == null || x == null
|| p.SignValue <= 0 || q.SignValue <= 0
|| g.SignValue <= 0 || x.SignValue <= 0
|| x.CompareTo(q) >= 0 || q.CompareTo(p) >= 0
|| q.BitLength > 999
|| g.CompareTo(p) >= 0 || g.BitLength == 1
|| g.ModPow(q, p).BitLength != 1)
{
throw new InvalidOperationException(
"invalid DSA private key");
}
this.p = p;
this.q = q;
this.g = g;
this.x = x;
qlen = q.BitLength;
if(q.SignValue <= 0 || qlen < 8)
{
throw new InvalidOperationException(
"bad group order: " + q);
}
rolen = (qlen + 7) >> 3;
rlen = rolen * 8;
/*
* Convert the private exponent (x) into a sequence
* of octets.
*/
bx = int2octets(x);
}
示例13: VerifySignature
/**
* return true if the value r and s represent a GOST3410 signature for
* the passed in message (for standard GOST3410 the message should be
* a GOST3411 hash of the real message to be verified).
*/
public bool VerifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
byte[] mRev = new byte[message.Length]; // conversion is little-endian
for (int i = 0; i != mRev.Length; i++)
{
mRev[i] = message[mRev.Length - 1 - i];
}
BigInteger e = new BigInteger(1, mRev);
BigInteger n = key.Parameters.N;
// r in the range [1,n-1]
if (r.CompareTo(BigInteger.One) < 0 || r.CompareTo(n) >= 0)
{
return false;
}
// s in the range [1,n-1]
if (s.CompareTo(BigInteger.One) < 0 || s.CompareTo(n) >= 0)
{
return false;
}
BigInteger v = e.ModInverse(n);
BigInteger z1 = s.Multiply(v).Mod(n);
BigInteger z2 = (n.Subtract(r)).Multiply(v).Mod(n);
ECPoint G = key.Parameters.G; // P
ECPoint Q = ((ECPublicKeyParameters)key).Q;
ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, z1, Q, z2).Normalize();
if (point.IsInfinity)
return false;
BigInteger R = point.AffineXCoord.ToBigInteger().Mod(n);
return R.Equals(r);
}
示例14: Derivate
internal static PrivateKey Derivate(this PrivateKey privateKey, byte[] cc, uint nChild, Network network, out byte[] ccChild)
{
byte[] l = null;
if((nChild >> 31) == 0)
{
var pubKey = privateKey.GetPublicKey().ToBytes();
l = Hashes.BIP32Hash(cc, nChild, pubKey[0], pubKey.Skip(1).ToArray());
}
else
{
l = Hashes.BIP32Hash(cc, nChild, 0, privateKey.ToBytes());
}
var ll = l.Take(32).ToArray();
var lr = l.Skip(32).Take(32).ToArray();
ccChild = lr;
var parse256LL = new BigInteger(1, ll);
var kPar = new BigInteger(1, privateKey.ToBytes());
var N = ECHelper.CURVE.N;
if(parse256LL.CompareTo(N) >= 0)
throw new InvalidOperationException("You won a prize ! this should happen very rarely. Take a screenshot, and roll the dice again.");
var key = parse256LL.Add(kPar).Mod(N);
if(key == BigInteger.Zero)
throw new InvalidOperationException("You won the big prize ! this would happen only 1 in 2^127. Take a screenshot, and roll the dice again.");
var keyBytes = key.ToByteArrayUnsigned();
if(keyBytes.Length < 32)
keyBytes = new byte[32 - keyBytes.Length].Concat(keyBytes).ToArray();
return new PrivateKey(keyBytes, network);
}
示例15: VerifySignature
// Section 7.2.6 ECVP-NR, pg 35
/**
* return true if the value r and s represent a signature for the
* message passed in. Generally, the order of the curve should be at
* least as long as the hash of the message of interest, and with
* ECNR, it *must* be at least as long. But just in case the signer
* applied mod(n) to the longer digest, this implementation will
* apply mod(n) during verification.
*
* @param digest the digest to be verified.
* @param r the r value of the signature.
* @param s the s value of the signature.
* @exception DataLengthException if the digest is longer than the key allows
*/
public bool VerifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
if (this.forSigning)
{
// not properly initilaized... deal with it
throw new InvalidOperationException("not initialised for verifying");
}
ECPublicKeyParameters pubKey = (ECPublicKeyParameters)key;
BigInteger n = pubKey.Parameters.N;
int nBitLength = n.BitLength;
BigInteger e = new BigInteger(1, message);
int eBitLength = e.BitLength;
if (eBitLength > nBitLength)
{
throw new DataLengthException("input too large for ECNR key.");
}
// r in the range [1,n-1]
if (r.CompareTo(BigInteger.One) < 0 || r.CompareTo(n) >= 0)
{
return false;
}
// s in the range [0,n-1] NB: ECNR spec says 0
if (s.CompareTo(BigInteger.Zero) < 0 || s.CompareTo(n) >= 0)
{
return false;
}
// compute P = sG + rW
ECPoint G = pubKey.Parameters.G;
ECPoint W = pubKey.Q;
// calculate P using Bouncy math
ECPoint P = ECAlgorithms.SumOfTwoMultiplies(G, s, W, r).Normalize();
if (P.IsInfinity)
return false;
BigInteger x = P.AffineXCoord.ToBigInteger();
BigInteger t = r.Subtract(x).Mod(n);
return t.Equals(e);
}