本文整理汇总了C#中BitcoinKit.BouncyCastle.Math.BigInteger.Remainder方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.Remainder方法的具体用法?C# BigInteger.Remainder怎么用?C# BigInteger.Remainder使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BitcoinKit.BouncyCastle.Math.BigInteger
的用法示例。
在下文中一共展示了BigInteger.Remainder方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: ProcessBlock
public BigInteger ProcessBlock(
BigInteger input)
{
if (key is RsaPrivateCrtKeyParameters)
{
//
// we have the extra factors, use the Chinese Remainder Theorem - the author
// wishes to express his thanks to Dirk Bonekaemper at rtsffm.com for
// advice regarding the expression of this.
//
RsaPrivateCrtKeyParameters crtKey = (RsaPrivateCrtKeyParameters)key;
BigInteger p = crtKey.P;;
BigInteger q = crtKey.Q;
BigInteger dP = crtKey.DP;
BigInteger dQ = crtKey.DQ;
BigInteger qInv = crtKey.QInv;
BigInteger mP, mQ, h, m;
// mP = ((input Mod p) ^ dP)) Mod p
mP = (input.Remainder(p)).ModPow(dP, p);
// mQ = ((input Mod q) ^ dQ)) Mod q
mQ = (input.Remainder(q)).ModPow(dQ, q);
// h = qInv * (mP - mQ) Mod p
h = mP.Subtract(mQ);
h = h.Multiply(qInv);
h = h.Mod(p); // Mod (in Java) returns the positive residual
// m = h * q + mQ
m = h.Multiply(q);
m = m.Add(mQ);
return m;
}
return input.ModPow(key.Exponent, key.Modulus);
}
示例2: GenerateSafePrimes
/*
* Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
*
* (see: Handbook of Applied Cryptography 4.86)
*/
internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
{
BigInteger p, q;
int qLength = size - 1;
int minWeight = size >> 2;
if (size <= 32)
{
for (;;)
{
q = new BigInteger(qLength, 2, random);
p = q.ShiftLeft(1).Add(BigInteger.One);
if (!p.IsProbablePrime(certainty))
continue;
if (certainty > 2 && !q.IsProbablePrime(certainty - 2))
continue;
break;
}
}
else
{
// Note: Modified from Java version for speed
for (;;)
{
q = new BigInteger(qLength, 0, random);
retry:
for (int i = 0; i < primeLists.Length; ++i)
{
int test = q.Remainder(BigPrimeProducts[i]).IntValue;
if (i == 0)
{
int rem3 = test % 3;
if (rem3 != 2)
{
int diff = 2 * rem3 + 2;
q = q.Add(BigInteger.ValueOf(diff));
test = (test + diff) % primeProducts[i];
}
}
int[] primeList = primeLists[i];
for (int j = 0; j < primeList.Length; ++j)
{
int prime = primeList[j];
int qRem = test % prime;
if (qRem == 0 || qRem == (prime >> 1))
{
q = q.Add(Six);
goto retry;
}
}
}
if (q.BitLength != qLength)
continue;
if (!q.RabinMillerTest(2, random))
continue;
p = q.ShiftLeft(1).Add(BigInteger.One);
if (!p.RabinMillerTest(certainty, random))
continue;
if (certainty > 2 && !q.RabinMillerTest(certainty - 2, random))
continue;
/*
* Require a minimum weight of the NAF representation, since low-weight primes may be
* weak against a version of the number-field-sieve for the discrete-logarithm-problem.
*
* See "The number field sieve for integers of low weight", Oliver Schirokauer.
*/
if (WNafUtilities.GetNafWeight(p) < minWeight)
continue;
break;
}
}
return new BigInteger[] { p, q };
}