本文整理汇总了C#中BitcoinKit.BouncyCastle.Math.BigInteger.Multiply方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.Multiply方法的具体用法?C# BigInteger.Multiply怎么用?C# BigInteger.Multiply使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BitcoinKit.BouncyCastle.Math.BigInteger
的用法示例。
在下文中一共展示了BigInteger.Multiply方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: GenerateSignature
/**
* generate a signature for the given message using the key we were
* initialised with. For conventional GOST3410 the message should be a GOST3411
* hash of the message of interest.
*
* @param message the message that will be verified later.
*/
public BigInteger[] GenerateSignature(
byte[] message)
{
byte[] mRev = new byte[message.Length]; // conversion is little-endian
for (int i = 0; i != mRev.Length; i++)
{
mRev[i] = message[mRev.Length - 1 - i];
}
BigInteger e = new BigInteger(1, mRev);
ECDomainParameters ec = key.Parameters;
BigInteger n = ec.N;
BigInteger d = ((ECPrivateKeyParameters)key).D;
BigInteger r, s = null;
ECMultiplier basePointMultiplier = CreateBasePointMultiplier();
do // generate s
{
BigInteger k;
do // generate r
{
do
{
k = new BigInteger(n.BitLength, random);
}
while (k.SignValue == 0);
ECPoint p = basePointMultiplier.Multiply(ec.G, k).Normalize();
r = p.AffineXCoord.ToBigInteger().Mod(n);
}
while (r.SignValue == 0);
s = (k.Multiply(e)).Add(d.Multiply(r)).Mod(n);
}
while (s.SignValue == 0);
return new BigInteger[]{ r, s };
}
示例2: ProcessBlock
/**
* Process a single block using the basic ElGamal algorithm.
*
* @param in the input array.
* @param inOff the offset into the input buffer where the data starts.
* @param length the length of the data to be processed.
* @return the result of the ElGamal process.
* @exception DataLengthException the input block is too large.
*/
public byte[] ProcessBlock(
byte[] input,
int inOff,
int length)
{
if (key == null)
throw new InvalidOperationException("ElGamal engine not initialised");
int maxLength = forEncryption
? (bitSize - 1 + 7) / 8
: GetInputBlockSize();
if (length > maxLength)
throw new DataLengthException("input too large for ElGamal cipher.\n");
BigInteger p = key.Parameters.P;
byte[] output;
if (key is ElGamalPrivateKeyParameters) // decryption
{
int halfLength = length / 2;
BigInteger gamma = new BigInteger(1, input, inOff, halfLength);
BigInteger phi = new BigInteger(1, input, inOff + halfLength, halfLength);
ElGamalPrivateKeyParameters priv = (ElGamalPrivateKeyParameters) key;
// a shortcut, which generally relies on p being prime amongst other things.
// if a problem with this shows up, check the p and g values!
BigInteger m = gamma.ModPow(p.Subtract(BigInteger.One).Subtract(priv.X), p).Multiply(phi).Mod(p);
output = m.ToByteArrayUnsigned();
}
else // encryption
{
BigInteger tmp = new BigInteger(1, input, inOff, length);
if (tmp.BitLength >= p.BitLength)
throw new DataLengthException("input too large for ElGamal cipher.\n");
ElGamalPublicKeyParameters pub = (ElGamalPublicKeyParameters) key;
BigInteger pSub2 = p.Subtract(BigInteger.Two);
// TODO In theory, a series of 'k', 'g.ModPow(k, p)' and 'y.ModPow(k, p)' can be pre-calculated
BigInteger k;
do
{
k = new BigInteger(p.BitLength, random);
}
while (k.SignValue == 0 || k.CompareTo(pSub2) > 0);
BigInteger g = key.Parameters.G;
BigInteger gamma = g.ModPow(k, p);
BigInteger phi = tmp.Multiply(pub.Y.ModPow(k, p)).Mod(p);
output = new byte[this.GetOutputBlockSize()];
// TODO Add methods to allow writing BigInteger to existing byte array?
byte[] out1 = gamma.ToByteArrayUnsigned();
byte[] out2 = phi.ToByteArrayUnsigned();
out1.CopyTo(output, output.Length / 2 - out1.Length);
out2.CopyTo(output, output.Length - out2.Length);
}
return output;
}
示例3: VerifySignature
/**
* return true if the value r and s represent a DSA signature for
* the passed in message for standard DSA the message should be a
* SHA-1 hash of the real message to be verified.
*/
public virtual bool VerifySignature(byte[] message, BigInteger r, BigInteger s)
{
DsaParameters parameters = key.Parameters;
BigInteger q = parameters.Q;
BigInteger m = CalculateE(q, message);
if (r.SignValue <= 0 || q.CompareTo(r) <= 0)
{
return false;
}
if (s.SignValue <= 0 || q.CompareTo(s) <= 0)
{
return false;
}
BigInteger w = s.ModInverse(q);
BigInteger u1 = m.Multiply(w).Mod(q);
BigInteger u2 = r.Multiply(w).Mod(q);
BigInteger p = parameters.P;
u1 = parameters.G.ModPow(u1, p);
u2 = ((DsaPublicKeyParameters)key).Y.ModPow(u2, p);
BigInteger v = u1.Multiply(u2).Mod(p).Mod(q);
return v.Equals(r);
}
示例4: VerifySignature
// 5.4 pg 29
/**
* return true if the value r and s represent a DSA signature for
* the passed in message (for standard DSA the message should be
* a SHA-1 hash of the real message to be verified).
*/
public virtual bool VerifySignature(byte[] message, BigInteger r, BigInteger s)
{
BigInteger n = key.Parameters.N;
// r and s should both in the range [1,n-1]
if (r.SignValue < 1 || s.SignValue < 1
|| r.CompareTo(n) >= 0 || s.CompareTo(n) >= 0)
{
return false;
}
BigInteger e = CalculateE(n, message);
BigInteger c = s.ModInverse(n);
BigInteger u1 = e.Multiply(c).Mod(n);
BigInteger u2 = r.Multiply(c).Mod(n);
ECPoint G = key.Parameters.G;
ECPoint Q = ((ECPublicKeyParameters) key).Q;
ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2).Normalize();
if (point.IsInfinity)
return false;
BigInteger v = point.AffineXCoord.ToBigInteger().Mod(n);
return v.Equals(r);
}
示例5: BlindMessage
/*
* Blind message with the blind factor.
*/
private BigInteger BlindMessage(
BigInteger msg)
{
BigInteger blindMsg = blindingFactor;
blindMsg = msg.Multiply(blindMsg.ModPow(key.Exponent, key.Modulus));
blindMsg = blindMsg.Mod(key.Modulus);
return blindMsg;
}
示例6: VerifySignature
/**
* return true if the value r and s represent a GOST3410 signature for
* the passed in message (for standard GOST3410 the message should be
* a GOST3411 hash of the real message to be verified).
*/
public bool VerifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
byte[] mRev = new byte[message.Length]; // conversion is little-endian
for (int i = 0; i != mRev.Length; i++)
{
mRev[i] = message[mRev.Length - 1 - i];
}
BigInteger e = new BigInteger(1, mRev);
BigInteger n = key.Parameters.N;
// r in the range [1,n-1]
if (r.CompareTo(BigInteger.One) < 0 || r.CompareTo(n) >= 0)
{
return false;
}
// s in the range [1,n-1]
if (s.CompareTo(BigInteger.One) < 0 || s.CompareTo(n) >= 0)
{
return false;
}
BigInteger v = e.ModInverse(n);
BigInteger z1 = s.Multiply(v).Mod(n);
BigInteger z2 = (n.Subtract(r)).Multiply(v).Mod(n);
ECPoint G = key.Parameters.G; // P
ECPoint Q = ((ECPublicKeyParameters)key).Q;
ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, z1, Q, z2).Normalize();
if (point.IsInfinity)
return false;
BigInteger R = point.AffineXCoord.ToBigInteger().Mod(n);
return R.Equals(r);
}