当前位置: 首页>>代码示例>>C#>>正文


C# Sample.KolmogorovSmirnovTest方法代码示例

本文整理汇总了C#中Sample.KolmogorovSmirnovTest方法的典型用法代码示例。如果您正苦于以下问题:C# Sample.KolmogorovSmirnovTest方法的具体用法?C# Sample.KolmogorovSmirnovTest怎么用?C# Sample.KolmogorovSmirnovTest使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Sample的用法示例。


在下文中一共展示了Sample.KolmogorovSmirnovTest方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: AnovaDistribution

        public void AnovaDistribution()
        {
            Distribution sDistribution = new NormalDistribution();
            Random rng = new Random(1);

            Sample fSample = new Sample();

            // do 100 ANOVAs
            for (int t = 0; t < 100; t++) {
                // each ANOVA has 4 groups
                List<Sample> groups = new List<Sample>();
                for (int g = 0; g < 4; g++) {
                    // each group has 3 data points
                    Sample group = new Sample();
                    for (int i = 0; i < 3; i++) {
                        group.Add(sDistribution.GetRandomValue(rng));
                    }
                    groups.Add(group);
                }

                OneWayAnovaResult result = Sample.OneWayAnovaTest(groups);
                fSample.Add(result.Factor.Result.Statistic);

            }

            // compare the distribution of F statistics to the expected distribution
            Distribution fDistribution = new FisherDistribution(3, 8);
            Console.WriteLine("m={0} s={1}", fSample.PopulationMean, fSample.PopulationStandardDeviation);
            TestResult kResult = fSample.KolmogorovSmirnovTest(fDistribution);
            Console.WriteLine(kResult.LeftProbability);
            Assert.IsTrue(kResult.LeftProbability < 0.95);
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:32,代码来源:SampleTest.cs

示例2: BivariateNullAssociation

        public void BivariateNullAssociation()
        {
            Random rng = new Random(314159265);

            // Create sample sets for our three test statisics
            Sample PS = new Sample();
            Sample SS = new Sample();
            Sample KS = new Sample();

            // variables to hold the claimed distribution of teach test statistic
            Distribution PD = null;
            Distribution SD = null;
            Distribution KD = null;

            // generate a large number of bivariate samples and conduct our three tests on each

            for (int j = 0; j < 100; j++) {

                BivariateSample S = new BivariateSample();

                // sample size should be large so that asymptotic assumptions are justified
                for (int i = 0; i < 100; i++) {
                    double x = rng.NextDouble();
                    double y = rng.NextDouble();
                    S.Add(x, y);
                }

                TestResult PR = S.PearsonRTest();
                PS.Add(PR.Statistic);
                PD = PR.Distribution;
                TestResult SR = S.SpearmanRhoTest();
                SS.Add(SR.Statistic);
                SD = SR.Distribution;
                TestResult KR = S.KendallTauTest();
                KS.Add(KR.Statistic);
                KD = KR.Distribution;

            }

            // do KS to test whether the samples follow the claimed distributions
            //Console.WriteLine(PS.KolmogorovSmirnovTest(PD).LeftProbability);
            //Console.WriteLine(SS.KolmogorovSmirnovTest(SD).LeftProbability);
            //Console.WriteLine(KS.KolmogorovSmirnovTest(KD).LeftProbability);
            Assert.IsTrue(PS.KolmogorovSmirnovTest(PD).LeftProbability < 0.95);
            Assert.IsTrue(SS.KolmogorovSmirnovTest(SD).LeftProbability < 0.95);
            Assert.IsTrue(KS.KolmogorovSmirnovTest(KD).LeftProbability < 0.95);
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:47,代码来源:MultivariateSampleTest.cs

示例3: SampleKuiperTest

        public void SampleKuiperTest()
        {
            // this test has a whiff of meta-statistics about it
            // we want to make sure that the Kuiper test statistic V is distributed according to the Kuiper
            // distribution; to do this, we create a sample of V statistics and do KS/Kuiper tests
            // comparing it to the claimed Kuiper distribution

            // start with any 'ol underlying distribution
            Distribution distribution = new ExponentialDistribution(2.0);

            // generate some samples from it, and for each one get a V statistic from a KS test
            Sample VSample = new Sample();
            Distribution VDistribution = null;
            for (int i = 0; i < 25; i++) {
                // the sample size must be large enough that the asymptotic assumptions are satistifed
                // at the moment this test fails if we make the sample size much smaller; we should
                // be able shrink this number when we expose the finite-sample distributions
                Sample sample = CreateSample(distribution, 250, i);
                TestResult kuiper = sample.KuiperTest(distribution);
                double V = kuiper.Statistic;
                Console.WriteLine("V = {0}", V);
                VSample.Add(V);
                VDistribution = kuiper.Distribution;
            }

            // check on the mean
            Console.WriteLine("m = {0} vs. {1}", VSample.PopulationMean, VDistribution.Mean);
            Assert.IsTrue(VSample.PopulationMean.ConfidenceInterval(0.95).ClosedContains(VDistribution.Mean));

            // check on the standard deviation
            Console.WriteLine("s = {0} vs. {1}", VSample.PopulationStandardDeviation, VDistribution.StandardDeviation);
            Assert.IsTrue(VSample.PopulationStandardDeviation.ConfidenceInterval(0.95).ClosedContains(VDistribution.StandardDeviation));

            // do a KS test comparing the sample to the expected distribution
            TestResult kst = VSample.KolmogorovSmirnovTest(VDistribution);
            Console.WriteLine("D = {0}, P = {1}", kst.Statistic, kst.LeftProbability);
            Assert.IsTrue(kst.LeftProbability < 0.95);

            // do a Kuiper test comparing the sample to the expected distribution
            TestResult kut = VSample.KuiperTest(VDistribution);
            Console.WriteLine("V = {0}, P = {1}", kut.Statistic, kut.LeftProbability);
            Assert.IsTrue(kut.LeftProbability < 0.95);
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:43,代码来源:SampleTest.cs

示例4: ZTestDistribution

        public void ZTestDistribution()
        {
            Random rng = new Random(1);

            // define the sampling population (which must be normal for a z-test)
            Distribution population = new NormalDistribution(2.0, 3.0);

            // collect 100 samples
            Sample zSample = new Sample();
            for (int i = 0; i < 100; i++) {

                // each z-statistic is formed by making a 4-count sample from a normal distribution
                Sample sample = new Sample();
                for (int j = 0; j < 4; j++) {
                    sample.Add(population.GetRandomValue(rng));
                }

                // for each sample, do a z-test against the population
                TestResult zResult = sample.ZTest(population.Mean, population.StandardDeviation);
                zSample.Add(zResult.Statistic);

            }

            // the z's should be distrubuted normally

            TestResult result = zSample.KolmogorovSmirnovTest(new NormalDistribution());
            Console.WriteLine("{0} {1}", result.Statistic, result.LeftProbability);
            Assert.IsTrue((result.LeftProbability > 0.05) && (result.LeftProbability < 0.95));
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:29,代码来源:SampleTest.cs

示例5: FitToSample


//.........这里部分代码省略.........
            // and the result is easily solved for the shape parameter
            //   k = \frac{\log 2}{\log\left(\frac{x_{2/3}}{x_{1/3}}\right)}
            double x1 = sample.InverseLeftProbability(1.0 / 3.0);
            double x2 = sample.InverseLeftProbability(2.0 / 3.0);
            double k0 = Global.LogTwo / Math.Log(x2 / x1);
            // Given the shape paramter, we could invert the expression for the mean to get
            // the scale parameter, but since we have an expression for \lambda from k, we
            // dont' need it.
            //double s0 = sample.Mean / AdvancedMath.Gamma(1.0 + 1.0 / k0);

            // Simply handing our 1D function to a root-finder works fine until we start to encounter large k. For large k,
            // even just computing \lambda goes wrong because we are taking x_i^k which overflows. Horst Rinne, "The Weibull
            // Distribution: A Handbook" describes a way out. Basically, we first move to variables z_i = \log(x_i) and
            // then w_i = z_i - \bar{z}. Then lots of factors of e^{k \bar{z}} cancel out and, even though we still do
            // have some e^{k w_i}, the w_i are small and centered around 0 instead of large and centered around \lambda.

            Sample transformedSample = sample.Copy();
            transformedSample.Transform(x => Math.Log(x));
            double zbar = transformedSample.Mean;
            transformedSample.Transform(z => z - zbar);

            // After this change of variable the 1D function to zero becomes
            //   g(k) = \sum_i ( 1 - k w_i ) e^{k w_i}
            // It's easy to show that g(0) = n and g(\infinity) = -\infinity, so it must cross zero. It's also easy to take
            // a derivative
            //   g'(k) = - k \sum_i w_i^2 e^{k w_i}
            // so we can apply Newton's method.

            int i = 0;
            double k1 = k0;
            while (true) {
                i++;
                double g = 0.0;
                double gp = 0.0;
                foreach (double w in transformedSample) {
                    double e = Math.Exp(k1 * w);
                    g += (1.0 - k1 * w) * e;
                    gp -= k1 * w * w * e;
                }
                double dk = -g / gp;
                k1 += dk;
                if (Math.Abs(dk) <= Global.Accuracy * Math.Abs(k1)) break;
                if (i >= Global.SeriesMax) throw new NonconvergenceException();
            }

            // The corresponding lambda can also be expressed in terms of zbar and w's.

            double t = 0.0;
            foreach (double w in transformedSample) {
                t += Math.Exp(k1 * w);
            }
            t /= transformedSample.Count;
            double lambda1 = Math.Exp(zbar) * Math.Pow(t, 1.0 / k1);

            // We need the curvature matrix at the minimum of our log likelyhood function
            // to determine the covariance matrix. Taking more derivatives...
            //    \frac{\partial^2 \log L} = \frac{N k}{\lambda^2} - \sum_i \frac{k(k+1) x_i^k}{\lambda^{k+2}}
            //    = - \frac{N k^2}{\lambda^2}
            // The second expression follows by inserting the first-derivative-equal-zero relation into the first.
            // For k=1, this agrees with the variance formula for the mean of the best-fit exponential.

            // Derivatives involving k are less simple.

            // We end up needing the means < (x/lambda)^k log(x/lambda) > and < (x/lambda)^k log^2(x/lambda) >

            double mpl = 0.0; double mpl2 = 0.0;
            foreach (double x in sample) {
                double r = x / lambda1;
                double p = Math.Pow(r, k1);
                double l = Math.Log(r);
                double pl = p * l;
                double pl2 = pl * l;
                mpl += pl;
                mpl2 += pl2;
            }
            mpl = mpl / sample.Count;
            mpl2 = mpl2 / sample.Count;

            // See if we can't do any better here. Transforming to zbar and w's looked ugly, but perhaps it
            // can be simplified? One interesting observation: if we take expectation values (which gives
            // the Fisher information matrix) the entries become simple:
            //   B_{\lambda \lambda} = \frac{N k^2}{\lambda^2}
            //   B_{\lambda k} = -\Gamma'(2) \frac{N}{\lambda}
            //   B_{k k } = [1 + \Gamma''(2)] \frac{N}{k^2}
            // Would it be bad to just use these directly?

            // Construct the curvature matrix and invert it.
            SymmetricMatrix B = new SymmetricMatrix(2);
            B[0, 0] = sample.Count * MoreMath.Sqr(k1 / lambda1);
            B[0, 1] = -sample.Count * k1 / lambda1 * mpl;
            B[1, 1] = sample.Count * (1.0 / MoreMath.Pow2(k1) + mpl2);
            SymmetricMatrix C = B.CholeskyDecomposition().Inverse();

            // Do a KS test to compare sample to best-fit distribution
            Distribution distribution = new WeibullDistribution(lambda1, k1);
            TestResult test = sample.KolmogorovSmirnovTest(distribution);

            // return the result
            return (new FitResult(new double[] {lambda1, k1}, C, test));
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:101,代码来源:WeibullDistribution.cs

示例6: PearsonRDistribution

        public void PearsonRDistribution()
        {
            Random rng = new Random(1);

            // pick some underlying distributions for the sample variables, which must be normal but can have any parameters
            NormalDistribution xDistribution = new NormalDistribution(1, 2);
            NormalDistribution yDistribution = new NormalDistribution(3, 4);

            // try this for several sample sizes, all low so that we see the difference from the normal distribution
            // n = 3 maxima at ends; n = 4 uniform; n = 5 semi-circular "mound"; n = 6 parabolic "mound"
            foreach (int n in new int[] { 3, 4, 5, 6, 8 }) {
                Console.WriteLine("n={0}", n);

                // find r values
                Sample rSample = new Sample();
                for (int i = 0; i < 100; i++) {

                    // to get each r value, construct a bivariate sample of the given size with no cross-correlation
                    BivariateSample xySample = new BivariateSample();
                    for (int j = 0; j < n; j++) {
                        xySample.Add(xDistribution.GetRandomValue(rng), yDistribution.GetRandomValue(rng));
                    }
                    double r = xySample.PearsonRTest().Statistic;
                    rSample.Add(r);

                }

                // check whether r is distributed as expected
                TestResult result = rSample.KolmogorovSmirnovTest(new PearsonRDistribution(n));
                Console.WriteLine("P={0}", result.LeftProbability);
                Assert.IsTrue(result.LeftProbability < 0.95);
            }
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:33,代码来源:BivariateSampleTest.cs

示例7: UniformOrderStatistics

        public void UniformOrderStatistics()
        {
            // Check that the order statistics of the uniform distribution are distributed as expected.

            Random rng = new Random(1);
            UniformDistribution u = new UniformDistribution();

            Sample maxima = new Sample();
            Sample minima = new Sample();

            for (int i = 0; i < 100; i++) {

                double maximum = 0.0;
                double minimum = 1.0;
                for (int j = 0; j < 4; j++) {
                    double value = u.GetRandomValue(rng);
                    if (value > maximum) maximum = value;
                    if (value < minimum) minimum = value;
                }

                maxima.Add(maximum);
                minima.Add(minimum);

            }

            // maxima should be distributed according to Beta(n,1)
            TestResult maxTest = maxima.KolmogorovSmirnovTest(new BetaDistribution(4, 1));
            Assert.IsTrue(maxTest.LeftProbability < 0.95);

            // minima should be distributed according to Beta(1,n)
            TestResult minTest = minima.KolmogorovSmirnovTest(new BetaDistribution(1, 4));
            Assert.IsTrue(minTest.LeftProbability < 0.95);
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:33,代码来源:DistributionTest.cs

示例8: StudentTest

        public void StudentTest()
        {
            // make sure Student t is consistent with its definition

            // we are going to take a sample that we expect to be t-distributed
            Sample tSample = new Sample();

            // begin with an underlying normal distribution
            Distribution xDistribution = new NormalDistribution(1.0, 2.0);

            // compute a bunch of t satistics from the distribution
            for (int i = 0; i < 200000; i++) {

                // take a small sample from the underlying distribution
                // (as the sample gets large, the t distribution becomes normal)
                Random rng = new Random(i);
                Sample xSample = new Sample();
                for (int j = 0; j < 5; j++) {
                    double x = xDistribution.InverseLeftProbability(rng.NextDouble());
                    xSample.Add(x);
                }

                // compute t for the sample
                double t = (xSample.Mean - xDistribution.Mean) / (xSample.PopulationStandardDeviation.Value / Math.Sqrt(xSample.Count));
                tSample.Add(t);
                //Console.WriteLine(t);

            }

            // t's should be t-distrubuted; use a KS test to check this
            Distribution tDistribution = new StudentDistribution(4);
            TestResult result = tSample.KolmogorovSmirnovTest(tDistribution);
            Console.WriteLine(result.LeftProbability);
            //Assert.IsTrue(result.LeftProbability < 0.95);

            // t's should be demonstrably not normally distributed
            Console.WriteLine(tSample.KolmogorovSmirnovTest(new NormalDistribution()).LeftProbability);
            //Assert.IsTrue(tSample.KolmogorovSmirnovTest(new NormalDistribution()).LeftProbability > 0.95);
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:39,代码来源:DistributionTest.cs

示例9: TwoSampleKolmogorovNullDistributionTest

        public void TwoSampleKolmogorovNullDistributionTest()
        {
            Distribution population = new ExponentialDistribution();

            int[] sizes = new int[] { 23, 30, 175 };

            foreach (int na in sizes) {
                foreach (int nb in sizes) {
                    Console.WriteLine("{0} {1}", na, nb);

                    Sample d = new Sample();
                    Distribution nullDistribution = null;
                    for (int i = 0; i < 128; i++) {

                        Sample a = TestUtilities.CreateSample(population, na, 31415 + na + i);
                        Sample b = TestUtilities.CreateSample(population, nb, 27182 + nb + i);

                        TestResult r = Sample.KolmogorovSmirnovTest(a, b);
                        d.Add(r.Statistic);
                        nullDistribution = r.Distribution;

                    }
                    // Only do full KS test if the number of bins is larger than the sample size, otherwise we are going to fail
                    // because the KS test detects the granularity of the distribution
                    TestResult mr = d.KolmogorovSmirnovTest(nullDistribution);
                    Console.WriteLine(mr.LeftProbability);
                    if (AdvancedIntegerMath.LCM(na, nb) > d.Count) Assert.IsTrue(mr.LeftProbability < 0.99);
                    // But always test that mean and standard deviation are as expected
                    Console.WriteLine("{0} {1}", nullDistribution.Mean, d.PopulationMean.ConfidenceInterval(0.99));
                    Assert.IsTrue(d.PopulationMean.ConfidenceInterval(0.99).ClosedContains(nullDistribution.Mean));
                    Console.WriteLine("{0} {1}", nullDistribution.StandardDeviation, d.PopulationStandardDeviation.ConfidenceInterval(0.99));
                    Assert.IsTrue(d.PopulationStandardDeviation.ConfidenceInterval(0.99).ClosedContains(nullDistribution.StandardDeviation));
                    Console.WriteLine("{0} {1}", nullDistribution.MomentAboutMean(3), d.PopulationMomentAboutMean(3).ConfidenceInterval(0.99));
                    //Assert.IsTrue(d.PopulationMomentAboutMean(3).ConfidenceInterval(0.99).ClosedContains(nullDistribution.MomentAboutMean(3)));

                    //Console.WriteLine("m {0} {1}", nullDistribution.Mean, d.PopulationMean);
                }
            }
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:39,代码来源:NullDistributionTests.cs

示例10: KuiperNullDistributionTest

        public void KuiperNullDistributionTest()
        {
            // The distribution is irrelevent; pick one at random
            Distribution sampleDistribution = new NormalDistribution();

            // Loop over various sample sizes
            foreach (int n in TestUtilities.GenerateIntegerValues(2, 128, 16)) {

                // Create a sample to hold the KS statistics
                Sample testStatistics = new Sample();
                // and a variable to hold the claimed null distribution, which should be the same for each test
                Distribution nullDistribution = null;

                // Create a bunch of samples, each with n+1 data points
                // We pick n+1 instead of n just to have different sample size values than in the KS test case
                for (int i = 0; i < 256; i++) {

                    // Just use n+i as a seed in order to get different points each time
                    Sample sample = TestUtilities.CreateSample(sampleDistribution, n + 1, 512 * n + i + 2);

                    // Do a Kuiper test of the sample against the distribution each time
                    TestResult r1 = sample.KuiperTest(sampleDistribution);

                    // Record the test statistic value and the claimed null distribution
                    testStatistics.Add(r1.Statistic);
                    nullDistribution = r1.Distribution;

                }

                // Do a KS test of our sample of Kuiper statistics against the claimed null distribution
                // We could use a Kuiper test here instead, which would be way cool and meta, but we picked KS instead for variety
                TestResult r2 = testStatistics.KolmogorovSmirnovTest(nullDistribution);
                Console.WriteLine("{0} {1} {2}", n, r2.Statistic, r2.LeftProbability);
                Assert.IsTrue(r2.RightProbability > 0.01);

                // Test moment matches, too
                Console.WriteLine(" {0} {1}", testStatistics.PopulationMean, nullDistribution.Mean);
                Console.WriteLine(" {0} {1}", testStatistics.PopulationVariance, nullDistribution.Variance);
                Assert.IsTrue(testStatistics.PopulationMean.ConfidenceInterval(0.99).ClosedContains(nullDistribution.Mean));
                Assert.IsTrue(testStatistics.PopulationVariance.ConfidenceInterval(0.99).ClosedContains(nullDistribution.Variance));

            }
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:43,代码来源:NullDistributionTests.cs

示例11: MultivariateLinearRegressionNullDistribution

        public void MultivariateLinearRegressionNullDistribution()
        {
            int d = 4;

            Random rng = new Random(1);
            NormalDistribution n = new NormalDistribution();

            Sample fs = new Sample();

            for (int i = 0; i < 64; i++) {
                MultivariateSample ms = new MultivariateSample(d);
                for (int j = 0; j < 8; j++) {
                    double[] x = new double[d];
                    for (int k = 0; k < d; k++) {
                        x[k] = n.GetRandomValue(rng);
                    }
                    ms.Add(x);
                }
                FitResult r = ms.LinearRegression(0);
                fs.Add(r.GoodnessOfFit.Statistic);
            }

            // conduct a KS test to check that F follows the expected distribution
            TestResult ks = fs.KolmogorovSmirnovTest(new FisherDistribution(3, 4));
            Assert.IsTrue(ks.LeftProbability < 0.95);
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:26,代码来源:MultivariateSampleTest.cs

示例12: FitToSample

        /// <summary>
        /// Computes the normal distribution that best fits the given sample.
        /// </summary>
        /// <param name="sample">The sample to fit.</param>
        /// <returns>The best fit parameters.</returns>
        /// <remarks>
        /// <para>The returned fit parameters are the &#x3BC; (<see cref="Mean"/>) and &#x3C3; (<see cref="StandardDeviation"/>) parameters, in that order.
        /// These are the same parameters, in the same order, that are required by the <see cref="NormalDistribution(double,double)"/> constructor to
        /// specify a new normal distribution.</para>
        /// </remarks>
        /// <exception cref="ArgumentNullException"><paramref name="sample"/> is null.</exception>
        /// <exception cref="InsufficientDataException"><paramref name="sample"/> contains fewer than three values.</exception>
        public static FitResult FitToSample(Sample sample)
        {
            if (sample == null) throw new ArgumentNullException("sample");
            if (sample.Count < 3) throw new InsufficientDataException();

            // maximum likelyhood estimates are guaranteed to be asymptotically unbiased, but not necessarily unbiased
            // this hits home for the maximum likelyhood estimate of the variance of a normal distribution, which fails
            // to include the N/(N-1) correction factor. since we know the bias, there is no reason for us not to correct
            // it, and we do so here

            UncertainValue mu = sample.PopulationMean;
            UncertainValue sigma = sample.PopulationStandardDeviation;

            Distribution distribution = new NormalDistribution(mu.Value, sigma.Value);
            TestResult test = sample.KolmogorovSmirnovTest(distribution);

            // the best-fit sigma and mu are known to be uncorrelated
            // you can prove this by writing down the log likelyhood function and
            // computing its mixed second derivative, which you will see vanishes
            // at the minimum

            return (new FitResult(mu.Value, mu.Uncertainty, sigma.Value, sigma.Uncertainty, 0.0, test));
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:35,代码来源:NormalDistribution.cs

示例13: TimeGammaGenerators

        public void TimeGammaGenerators()
        {
            double alpha = 1.0;

            Random rng = new Random(1);
            //IDeviateGenerator nRng = new AhrensDieterGammaGenerator(alpha);
            IDeviateGenerator nRng = new MarsagliaTsangGammaGenerator(new PolarRejectionNormalDeviateGenerator(), alpha);
            Distribution d = new GammaDistribution(alpha);

            //double sum = 0.0;
            Sample sample = new Sample();

            Stopwatch timer = Stopwatch.StartNew();
            for (int i = 0; i < 1000000; i++) {
                //double x = nRng.GetNext(rng);
                double x = d.InverseLeftProbability(rng.NextDouble());
                //sum += x;
                sample.Add(x);
            }
            timer.Stop();

            Console.WriteLine(sample.KolmogorovSmirnovTest(d).RightProbability);
            //Console.WriteLine(sum);
            Console.WriteLine(timer.ElapsedMilliseconds);
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:25,代码来源:RandomTest.cs

示例14: GammaFromExponential

        public void GammaFromExponential()
        {
            // test that x_1 + x_2 + ... + x_n ~ Gamma(n) when z ~ Exponential()

            Random rng = new Random(1);
            ExponentialDistribution eDistribution = new ExponentialDistribution();

            // pick some low values of n so distribution is not simply normal
            foreach (int n in new int[] { 2, 3, 4, 5 }) {
                Sample gSample = new Sample();
                for (int i = 0; i < 100; i++) {

                    double sum = 0.0;
                    for (int j = 0; j < n; j++) {
                        sum += eDistribution.GetRandomValue(rng);
                    }
                    gSample.Add(sum);

                }

                GammaDistribution gDistribution = new GammaDistribution(n);
                TestResult result = gSample.KolmogorovSmirnovTest(gDistribution);
                Assert.IsTrue(result.LeftProbability < 0.95);

            }
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:26,代码来源:DistributionTest.cs

示例15: FitToSample

        /// <summary>
        /// Computes the exponential distribution that best fits the given sample.
        /// </summary>
        /// <param name="sample">The sample to fit.</param>
        /// <returns>The best fit parameter.</returns>
        /// <remarks>
        /// <para>The returned fit parameter is &#x3BC; (the <see cref="Mean"/>).
        /// This is the same parameter that is required by the <see cref="ExponentialDistribution(double)"/> constructor to
        /// specify a new exponential distribution.</para>
        /// </remarks>
        /// <exception cref="ArgumentNullException"><paramref name="sample"/> is null.</exception>
        /// <exception cref="InsufficientDataException"><paramref name="sample"/> contains fewer than two values.</exception>
        /// <exception cref="InvalidOperationException"><paramref name="sample"/> contains non-positive values.</exception>
        public static FitResult FitToSample(Sample sample)
        {
            if (sample == null) throw new ArgumentNullException("sample");
            if (sample.Count < 2) throw new InsufficientDataException();

            // none of the data is allowed to be negative
            foreach (double value in sample) {
                if (value < 0.0) throw new InvalidOperationException();
            }

            // the best-fit exponential's mean is the sample mean, with corresponding uncertainly

            double lambda = sample.Mean;
            double dLambda = lambda / Math.Sqrt(sample.Count);

            Distribution distribution = new ExponentialDistribution(lambda);
            TestResult test = sample.KolmogorovSmirnovTest(distribution);

            return (new FitResult(lambda, dLambda, test));
        }
开发者ID:JackDetrick,项目名称:metanumerics,代码行数:33,代码来源:ExponentialDistribution.cs


注:本文中的Sample.KolmogorovSmirnovTest方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。