本文整理汇总了C#中PriorityQueue.pop方法的典型用法代码示例。如果您正苦于以下问题:C# PriorityQueue.pop方法的具体用法?C# PriorityQueue.pop怎么用?C# PriorityQueue.pop使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PriorityQueue
的用法示例。
在下文中一共展示了PriorityQueue.pop方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: testPriorityQueue
void testPriorityQueue()
{
Vector2[] vs = { new Vector2(0, 1), new Vector2(0, 3), new Vector2(0, 4), new Vector2(0, 2), new Vector2(0, 5),Vector2.zero };
Comparison<Vector2> cmp = (v1, v2) => {
float dist = (Vector2.zero - v1).sqrMagnitude - (Vector2.zero - v2).sqrMagnitude;
//Debug.LogFormat("v1:{0} v2:{1} D:{2}",v1,v2,dist);
return Mathf.RoundToInt(dist);
};
PriorityQueue<Vector2> pq = new PriorityQueue<Vector2>(cmp);
pq.push(vs);
Debug.Log(pq.showBuffer());
int i = 0;
while (pq.Count != 0) {
Debug.LogFormat("[{1}]:{0}",pq.pop(),i++);
}
}
示例2: moveTo
/**
* A coroutine that uses A* pathfinding to find an optimal path between the unit's
* 'targetTile' to the given tileToMoveTo
* Note: it does not use 'currentTile' since that can often be considered 'previousTile' as well
*/
public virtual IEnumerator moveTo(Tile tileToMoveTo, bool activelySetNewTarget = false) {
// Avoid multiple calls to move the unit while the path is still being calculated
if ((isCalculatingPath && !activelySetNewTarget) || isInBattle || tileToMoveTo == null) yield break;
isCalculatingPath = true;
Debug.Log("Calculating path to new tile");
// Clear the previous path in case the user gave overriding commands
targetPath.setNewTileQueue(new Queue<Tile>());
// Set up the priority queue for our pathfinding algo: A*
PriorityQueue priorityQueue = new PriorityQueue();
priorityQueue.add(
getNewPath(
targetTile,
Vector2.Distance(targetTile.gameObject.transform.position, tileToMoveTo.gameObject.transform.position),
getTileCost(targetTile)
)
);
// Keep track of which tiles (by instance id) we have already 'visited' to cut down on running time
Dictionary<int, bool> visitedTiles = new Dictionary<int, bool>();
visitedTiles[targetTile.GetInstanceID()] = true;
// Continue to check and expand the first Path in the queue until we reach our target
Path path;
float startingTime = Time.time;
while (true) {
// If we have no paths left in the queue, then a solution is impossible
if (priorityQueue.getCount() == 0) {
Debug.Log("Could not find a path to target tile");
isCalculatingPath = false;
return false;
}
// Pop our next path and check if we have reached our target yet
path = priorityQueue.pop();
if (tileToMoveTo == path.getLastTileInPath()) {
//Debug.Log("Found optimal path: ");
//path.printPath();
break;
}
// If we havent reached the target, expand on the currently popped path with all adjacent tile options
foreach (Tile adjacentTile in mapManager.getAdjacentTiles(path.getLastTileInPath())) {
// Only add it to the path if it is unoccuppied and we haven't already visited it yet
if (visitedTiles.ContainsKey(adjacentTile.GetInstanceID()) || !canWalkTo(adjacentTile.transform.position)) continue;
else visitedTiles[adjacentTile.GetInstanceID()] = true;
// Add the tile to a deep copy of our original path
//Debug.Log("Adding adjacentTile to path: " + adjacentTile.GetInstanceID() + " - " + adjacentTile.gameObject.transform.position.ToString());
Path copiedPath = getNewPath(path);
// Our A* heuristic is the straight line distance between our next tile and our target
float heuristic = Vector2.Distance(adjacentTile.gameObject.transform.position, tileToMoveTo.gameObject.transform.position);
// Add the full path back to our priority queue
copiedPath.add(adjacentTile, heuristic, getTileCost(adjacentTile));
priorityQueue.add(copiedPath);
}
// If 100 milliseconds have passed Yield the coroutine to let the rest of unity work for a bit (until the next frame)
if (Time.time - startingTime > 0.1f) {
yield return null;
startingTime = Time.time;
}
}
//Debug.Log("Found optimal path");
setPath(path);
// Finish the coroutine
isCalculatingPath = false;
return true;
}
示例3: findPath
//This is the method that will do A*. It returns a vector of locations to follow
public LinkedList<Vector3> findPath(Vector3 start, Vector3 end)
{
LinkedList<Vector3> result = new LinkedList<Vector3> ();
Node startNode = currentGraph.getNodeByLocation ((int)start.y, (int)start.x);
startNode.rawCost = 0.0f;
queue = new PriorityQueue (startNode);
while (!queue.isEmpty()) {
//The A* magic happens here
Node minNode = queue.pop ();
//if this is our ending node, stop pathfinding and form our full path on the graph
if (minNode == currentGraph.getNodeByLocation ((int) end.y, (int) end.x)) {
//Here we form the path depending
Node currentNode = minNode;
while (currentNode != null) {
result.AddFirst(new Vector3(currentNode.widthPos, currentNode.heightPos));
currentNode = currentNode.parent;
}
resetGraph();
return result;
}
//else, we need to update our priority queue, etc.
else {
float currentRaw = minNode.rawCost;
foreach (Node neighbor in minNode.edges.Values) {
if (queue.isVisited(neighbor)) {
float oldRaw = neighbor.rawCost;
float newRaw = currentRaw + Vector2.Distance(new Vector2(minNode.widthPos, minNode.heightPos), new Vector2(neighbor.widthPos, neighbor.heightPos));
if (newRaw < oldRaw) {
neighbor.rawCost = newRaw;
neighbor.parent = minNode;
}
} else {
neighbor.rawCost = currentRaw + Vector2.Distance(new Vector2(minNode.widthPos, minNode.heightPos), new Vector2(neighbor.widthPos, neighbor.heightPos));
neighbor.parent = minNode;
queue.insert(neighbor);
}
}
}
}
resetGraph ();
return result;
}