本文整理汇总了C#中PriorityQueue.deleteMin方法的典型用法代码示例。如果您正苦于以下问题:C# PriorityQueue.deleteMin方法的具体用法?C# PriorityQueue.deleteMin怎么用?C# PriorityQueue.deleteMin使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PriorityQueue
的用法示例。
在下文中一共展示了PriorityQueue.deleteMin方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Dijkstras
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////// Dijktra's Algorithm ////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* This function will implement Dijkstra's Algorithm to find the shortest path to all the nodes from the source node
* Time Complexity: O((|V| + |E|) log|V|) with a heap as it iterates over all the nodes and all the edges and uses a queue to go
* through them where the heap queue has a worst case of log|V|. Whereas if the queue was implemented with an array, the complexity
* would be O((|V|^2) since the queue has a worst case of |V| and |E| is upper bounded by |V|^2 and so |V|^2 dominates.
* Space Complexity: O(|V|) as it creates arrays as big as the number of nodes in the graph
*/
private List<int> Dijkstras(ref PriorityQueue queue, bool isArray)
{
// Create Queue to track order of points
queue.makeQueue(points.Count);
// Set up prev node list
List<int> prev = new List<int>();
List<double> dist = new List<double>();
for (int i = 0; i < points.Count; i++)
{
prev.Add(-1);
dist.Add(double.MaxValue);
}
// Initilize the start node distance to 0
dist[startNodeIndex] = 0;
// Update Priority Queue to reflect change in start point distance
if (isArray)
queue.insert(startNodeIndex, 0);
else
queue.insert(ref dist, startNodeIndex);
// Iterate while the queue is not empty
while (!queue.isEmpty())
{
// Grab the next min cost Point
int indexOfMin;
if (isArray)
indexOfMin = queue.deleteMin();
else
indexOfMin = queue.deleteMin(ref dist);
PointF u = points[indexOfMin];
// For all edges coming out of u
foreach (int targetIndex in adjacencyList[indexOfMin])
{
PointF target = points[targetIndex];
double newDist = dist[indexOfMin] + computeDistance(u, target);
if (dist[targetIndex] > newDist)
{
prev[targetIndex] = indexOfMin;
dist[targetIndex] = newDist;
if (isArray)
queue.decreaseKey(targetIndex, newDist);
else
queue.decreaseKey(ref dist, targetIndex);
}
}
}
return prev;
}