本文整理汇总了C#中PriorityQueue.getSize方法的典型用法代码示例。如果您正苦于以下问题:C# PriorityQueue.getSize方法的具体用法?C# PriorityQueue.getSize怎么用?C# PriorityQueue.getSize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PriorityQueue
的用法示例。
在下文中一共展示了PriorityQueue.getSize方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: determinePath
// <summary>
// Given two Node objects, determines a path between the startNode and the endNode
// </summary>
// <param name="startNode"> the start Node </param>
// <param name="endNode"> the end Node </param>
public void determinePath(GenerateGraph.Node startNode, GenerateGraph.Node endNode)
{
if (startNode == null || endNode == null)
return;
PriorityQueue<GenerateGraph.Node> pq = new PriorityQueue<GenerateGraph.Node>(map.nodes.Count);
pq.queue(startNode);
Dictionary<GenerateGraph.Node, GenerateGraph.Node> came_from = new Dictionary<GenerateGraph.Node, GenerateGraph.Node>();
Dictionary<GenerateGraph.Node, float> cost_so_far = new Dictionary<GenerateGraph.Node, float> ();
came_from.Add(startNode, null);
cost_so_far.Add (startNode, 0);
Dictionary<GenerateGraph.Node, int> nodeToId = new Dictionary<GenerateGraph.Node, int>();
for (int i = 0; i < map.nodes.Count; i++) {
nodeToId.Add (map.nodes[i], i);
}
GenerateGraph.Node current;
while (pq.getSize() > 0) {
current = pq.dequeue();
print(current.point.ToString());
print("Neighbor Count: " + current.neighbors.Count);
if (current.Equals(endNode)) {
print ("True");
break;
}
for (int i = 0; i < current.neighbors.Count; i++) {
print("Current Neighbor: " + current.neighbors[i].point.ToString());
float new_cost = cost_so_far[current] +
distanceBetweenNodes(current, current.neighbors[i]);
if (cost_so_far.ContainsKey(current.neighbors[i]) == false ||
new_cost < cost_so_far[current.neighbors[i]]) {
cost_so_far[current.neighbors[i]] = new_cost;
current.neighbors[i].priority = new_cost;
pq.queue(current.neighbors[i]);
came_from[current.neighbors[i]] = current;
}
}
}
//Put nodes of the path into the list
path = new List<GenerateGraph.Node> ();
GenerateGraph.Node currentNode = endNode;
path.Add (currentNode);
while (currentNode.Equals(startNode) == false) {
currentNode = came_from[currentNode];
path.Add (currentNode);
}
path.Reverse();
print ("Path Nodes: ");
for (int i = 0; i < path.Count; i++) {
print(nodeToId[path[i]] + "\n");
}
}
示例2: ThreadFunction
// <summary>
// Performs an A* traversal from the start node to the end node; however, the end node
// only provides a direction for the path finding, as once the current node in the
// traversal is pathLength away from the start node, the traversal is complete
// </summary>
protected override void ThreadFunction()
{
PriorityQueue<Node> open = new PriorityQueue<Node> (PathPlanningDataStructures.graph.Size ());
Dictionary<Node, Node> came_from = new Dictionary<Node, Node> ();
Dictionary<Node, float> cost_so_far = new Dictionary<Node, float> ();
came_from.Add (startNode, null);
cost_so_far.Add (startNode, 0);
open.queue (PathPlanningDataStructures.heuristic.Estimate (startNode, useItemReduction),
startNode);
while (open.getSize() > 0) {
Node current = open.dequeue ();
if (current.Equals (PathPlanningDataStructures.graph.endNode) ||
Node.distanceBetweenNodes (startNode, current) >= pathLength) {
if (came_from[current] == null) {
came_from[current] = startNode;
}
destinationNode = current;
break;
}
foreach (Node n in current.neighbors) {
float graph_cost = cost_so_far [current] + Node.distanceBetweenNodes (current, n);
if ((cost_so_far.ContainsKey (n) == false || graph_cost < cost_so_far [n]) &&
closedNodes.Contains(n.position) == false) {
cost_so_far [n] = graph_cost;
float priority = graph_cost +
PathPlanningDataStructures.heuristic.Estimate (n, useItemReduction);
open.queue (priority, n);
came_from [n] = current;
}
}
}
//Put nodes of the path into the list
pathWayPoints = new List<Vector3> ();
Node currentNode = destinationNode;
pathWayPoints.Add (currentNode.position);
lock (PathPlanningDataStructures.globalLock) {
PathPlanningDataStructures.nodeToCount [currentNode.position] += 1;
}
while (currentNode.Equals(startNode) == false) {
currentNode = came_from [currentNode];
pathWayPoints.Add (currentNode.position);
lock (PathPlanningDataStructures.globalLock) {
PathPlanningDataStructures.nodeToCount [currentNode.position] += 1;
}
}
pathWayPoints.Reverse ();
}
示例3: GetPath
public static List<Node> GetPath(Vector3 start)
{
Node startNode = graph.getClosestNode(start);
PriorityQueue<Node> open = new PriorityQueue<Node>(graph.Size());
HashSet<Node> closed = new HashSet<Node>();
Dictionary<Node, Node> came_from = new Dictionary<Node, Node>();
Dictionary<Node, float> cost_so_far = new Dictionary<Node, float>();
came_from.Add(startNode, null);
cost_so_far.Add(startNode, 0);
open.queue(heuristic.Estimate(startNode), startNode);
while (open.getSize() > 0) {
Node current = open.dequeue();
if (current.Equals(graph.endNode)) {
break;
}
foreach (Node n in current.neighbors) {
float graph_cost = cost_so_far[current] + Node.distanceBetweenNodes(current, n);
if (cost_so_far.ContainsKey(n) == false || graph_cost < cost_so_far[n]) {
cost_so_far[n] = graph_cost;
float priority = graph_cost + heuristic.Estimate(n);
open.queue(priority, n);
came_from[n] = current;
}
}
}
//Put nodes of the path into the list
List<Node> path = new List<Node> ();
Node currentNode = graph.endNode;
path.Add (currentNode);
while (currentNode.Equals(startNode) == false) {
currentNode = came_from[currentNode];
path.Add (currentNode);
}
path.Reverse();
return path;
}
示例4: HeuristicD
public HeuristicD(GenerateGraph graph)
{
heuristicCost = new Dictionary<Node, float>();
PriorityQueue<Node> pq = new PriorityQueue<Node>(graph.Size ());
Dictionary<Node, float> cost_so_far = new Dictionary<Node, float> ();
pq.queue(0.0f, graph.endNode);
cost_so_far.Add (graph.endNode, 0.0f);
while (pq.getSize() > 0) {
Node current = pq.dequeue();
heuristicCost[current] = cost_so_far[current];
for (int i = 0; i < current.neighbors.Count; i++) {
float new_cost = cost_so_far[current] + Node.distanceBetweenNodes(current, current.neighbors[i]);
if (!cost_so_far.ContainsKey(current.neighbors[i]) || new_cost < cost_so_far[current.neighbors[i]]) {
cost_so_far[current.neighbors[i]] = new_cost;
pq.queue(new_cost, current.neighbors[i]);
}
}
}
}