当前位置: 首页>>代码示例>>C#>>正文


C# Point3D.ToVector方法代码示例

本文整理汇总了C#中Point3D.ToVector方法的典型用法代码示例。如果您正苦于以下问题:C# Point3D.ToVector方法的具体用法?C# Point3D.ToVector怎么用?C# Point3D.ToVector使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Point3D的用法示例。


在下文中一共展示了Point3D.ToVector方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: ToDenseVector

 public void ToDenseVector()
 {
     var p = new Point3D(1, 2, 3);
     var denseVector = p.ToVector();
     Assert.AreEqual(3, denseVector.Count);
     Assert.AreEqual(1, denseVector[0], 1e-6);
     Assert.AreEqual(2, denseVector[1], 1e-6);
     Assert.AreEqual(3, denseVector[2], 1e-6);
 }
开发者ID:EMostafaAli,项目名称:mathnet-spatial,代码行数:9,代码来源:Point3DTests.cs

示例2: solve

        public static Vector<double> solve(
            List<double[]> Vertices,
            List<int[]> TrianglesVertices,
            List<double[]> FacetNormals,
            Vector<double> X, Point3D oRoot,
            UnitVector3D vDir1,
            UnitVector3D vDir2, Mesh M)
        {
            //Method from article -Wang,Smith. Surface flattening based on energy model. Computer-Aided Design (2002) 823-833	

            //PseudoCode
            //Input: P - Set of nodes, in the initial position and N is the number of nodes
            //Output: the final positions of P with E(o) minimized

            //  FOR i = 1 TO n
            //        mi = p / 3 Sum(Ak), where Ak is the area

            //  WHILE (Relative Area difference Es > Permissible accuracy or Relative edge length difference Ec > Permissible accuracy)
            //  AND Variation of E(o) > Permissible percentage €
            //  AND the number of iterations < Permissible number N
            //        FOR i = 1 TO n
            //                Compute Tensile force of Node Pi: Fi = Sum(C * (Dist(PiPj) - Dist(QiQj)))nij where(P - 2D - Q - 3D nij - Vector Pi to Pj)
            //                Compute new position of Pi  qi = qi + dtqi. + dt ^ 2 / 2 qi..where qi.= qi.+ dtqi..and qi..= Fi / mi
            //                Compute Penalty force and aplly to Fpi
            //                Compute new position of Pi  qi = qi + dtqi. + dt ^ 2 / 2 qi..where qi.= qi.+ dtqi..and qi..= Fpi / mi
            //        Compute new Es= Sum(TotalAreaNow - TotalAreaBefore) / TotalAreaNow
            //        Compute new Ec= Sum(TotalLenghtNow - TotalLenghtBefore) / TotalLenghtNow
            //        Compute new E(o)Sum(E(pi)) where E(pi) = 0.5 * Sum(C * (Dist(PiPj) - Dist(QiQj))) ^ 2

            double[] Mass = new double [Vertices.Count];
            int[] MassCounter = new int[Vertices.Count];
            double Permissible = 0.00000001;
            Vector<double> Fi = Vector<double>.Build.Dense(2);
            List<Vector<double>> dqi = new List<Vector<double>>();
            List<Vector<double>> qi = new List<Vector<double>>();
            double LastEc = 0, Ec = 0;
            double LastEs = 0, Es = 0;
            double LastEo = 0, Eo = 0;
            double C = 0.5;
            double ro = 1;
            double t = 0.01;
            int N = 100;
            int Iteration = 0;
            double Total = 0;
            double LastTotal = 0;
            foreach (int[] tri in TrianglesVertices) {
                double A = getArea(Vertices[tri[0]], Vertices[tri[1]], Vertices[tri[2]]);
                double P = getPerimeter(Vertices[tri[0]], Vertices[tri[1]], Vertices[tri[2]]);
                Mass[tri[0]] += ((double)1 / (double)3) * A * ro;
                Mass[tri[1]] += ((double)1 / (double)3) * A * ro;
                Mass[tri[2]] += ((double)1 / (double)3) * A * ro;
                MassCounter[tri[0]] += 1;
                MassCounter[tri[1]] += 1;
                MassCounter[tri[2]] += 1;
                LastEc += A;
                LastEs += P;
            }
            for (int i = 0; i < Vertices.Count; i++) {
                Mass[i] = Mass[i] / MassCounter[i];
                qi.Add(Vector<double>.Build.DenseOfArray(new double[] { X[i * 2], X[i * 2 + 1], 0 }));
                dqi.Add(Vector<double>.Build.DenseOfArray(new double[] { 0, 0, 0 }));
            }
            do {
                Iteration += 1;
                LastEo = Eo;
                Eo = 0;
                Total = 0;
                for (int i = 0; i < Vertices.Count; i++) {
                    Point3D Pi = new Point3D(qi[i][0], qi[i][1], qi[i][2]);
                    Point3D Qi = new Point3D(Vertices[i][0], Vertices[i][1], Vertices[i][2]);
                    Fi = Vector<double>.Build.Dense(3);
                    for (int j = i+1; j < Vertices.Count; j++) {
                        if (i == j) continue;
                        Point3D Pj = new Point3D(qi[j][0], qi[j][1], qi[j][2]);
                        Point3D Qj = new Point3D(Vertices[j][0], Vertices[j][1], Vertices[j][2]);
                        UnitVector3D nij = new UnitVector3D((Pi.ToVector()- Pj.ToVector()).ToArray());
                        Fi += C * ((Pi.DistanceTo(Pj) - Qi.DistanceTo(Qj)) * nij).ToVector();
                        Eo += Math.Pow(C * ((Pi.DistanceTo(Pj) - Qi.DistanceTo(Qj))), 2);
                    }
                    Vector<double> ddqi = Fi / Mass[i];
                    Console.WriteLine(Fi);
                    dqi[i] += t * ddqi;
                    qi[i] += dqi[i] * t + 0.5 * Math.Pow(t, 2) * ddqi;

                    Total += Math.Abs(qi[i][0] - X[i * 2]);
                    Total += Math.Abs(qi[i][1] - X[i * 2] + 1);
                }
                Console.WriteLine(Total- LastTotal);
                LastTotal = Total;
                LastEc = Ec;
                Ec = 0;
                LastEs = Es;
                Es = 0;
                foreach (int[] tri in TrianglesVertices) {
                    double A = getArea(Vertices[tri[0]], Vertices[tri[1]], Vertices[tri[2]]);
                    double P = getPerimeter(Vertices[tri[0]], Vertices[tri[1]], Vertices[tri[2]]);
                    Ec += A;
                    Es += P;
                }
                if (((Ec - LastEc) / Ec < Permissible || (Es - LastEs) / Es < Permissible)
//.........这里部分代码省略.........
开发者ID:JGEsteves89,项目名称:BlankCalculator,代码行数:101,代码来源:EnergyModelFiniteSolver.cs

示例3: solve

        public static Vector<double> solve(
            List<double[]> Vertices, 
            List<int[]> TrianglesVertices, 
            List<double[]> FacetNormals, 
            Vector<double> X, Point3D oRoot, 
            UnitVector3D vDir1, 
            UnitVector3D vDir2)
        {
            UnitVector3D dx, dy, dz;
            dx = new UnitVector3D(new double[] { 1, 0, 0 });
            dy = new UnitVector3D(new double[] { 0, 1, 0 });
            dz = new UnitVector3D(new double[] { 0, 0, 1 });

            UnitVector3D PlaneNormal = vDir1.CrossProduct(vDir2);

            double E = 200 * 10 ^ 6;
            double v = 0.3;
            double h = 1;

            double[,] MatrixK = new double[Vertices.Count * 3, Vertices.Count * 3];
            double[] Vectorq = new double[Vertices.Count * 3];

            double[,] MatrixD = new double[3, 3];
            MatrixD[0, 0] = (E / ((1 + v) * (1 - 2 * v))) * (1 - v);
            MatrixD[0, 1] = (E / ((1 + v) * (1 - 2 * v))) * (v);
            MatrixD[1, 1] = (E / ((1 + v) * (1 - 2 * v))) * (1 - v);
            MatrixD[1, 0] = (E / ((1 + v) * (1 - 2 * v))) * (v);
            MatrixD[2, 2] = (E / ((1 + v) * (1 - 2 * v))) * (1 - v / 2);
            Matrix<double> D = Matrix<double>.Build.DenseOfArray(MatrixD);

            for (int j = 0; j < TrianglesVertices.Count; j++) {
                int[] tri = TrianglesVertices[j];

                UnitVector3D dx0, dy0, dz0;
                UnitVector3D dxn, dyn, dzn;

                Point3D p1, p2, p3;
                Point3D p10, p20, p30;
                Point3D p1n, p2n, p3n;
                Point3D p11, p21, p31;

                p1 = new Point3D(Vertices[tri[0]]);
                p2 = new Point3D(Vertices[tri[1]]);
                p3 = new Point3D(Vertices[tri[2]]);

                p1n = new Point3D(new double[] { X[tri[0] * 2], X[tri[0] * 2 + 1], 0 });
                p2n = new Point3D(new double[] { X[tri[1] * 2], X[tri[1] * 2 + 1], 0 });
                p3n = new Point3D(new double[] { X[tri[2] * 2], X[tri[2] * 2 + 1], 0 });

                dx0 = new UnitVector3D(p2.X - p1.X, p2.Y - p1.Y, p2.Z - p1.Z);
                dz0 = new UnitVector3D(FacetNormals[j]);
                dy0 = dz0.CrossProduct(dx0);

                dxn = new UnitVector3D(p2n.X - p1n.X, p2n.Y - p1n.Y, p2n.Z - p1n.Z);
                dzn = PlaneNormal;
                dyn = dxn.CrossProduct(dzn);

                p10 = new Point3D(new double[] { 0, 0, 0 });
                p20 = new Point3D(new double[] { p2.ToVector().DotProduct(dx0.ToVector()) - p1.ToVector().DotProduct(dx0.ToVector()), 0, 0 });
                p30 = new Point3D(new double[] { p3.ToVector().DotProduct(dx0.ToVector()) - p1.ToVector().DotProduct(dx0.ToVector()), p3.ToVector().DotProduct(dy0.ToVector()) - p1.ToVector().DotProduct(dy0.ToVector()), 0 });

                p11 = new Point3D(new double[] { 0, 0, 0 });
                p21 = new Point3D(new double[] { p2n.ToVector().DotProduct(dxn.ToVector()) - p1n.ToVector().DotProduct(dxn.ToVector()), 0, 0 });
                p31 = new Point3D(new double[] { p3n.ToVector().DotProduct(dxn.ToVector()) - p1n.ToVector().DotProduct(dxn.ToVector()), p3n.ToVector().DotProduct(dyn.ToVector()) - p1n.ToVector().DotProduct(dyn.ToVector()), 0 });

                double[,] Transform = new double[3 * 3, 3 * 3];
                for (int i = 0; i < 3; i++) {
                    Transform[i * 3 + 0, i * 3 + 0] = Math.Cos(dx0.AngleTo(dx).Radians);
                    Transform[i * 3 + 0, i * 3 + 1] = Math.Cos(dx0.AngleTo(dy).Radians);
                    Transform[i * 3 + 0, i * 3 + 2] = Math.Cos(dx0.AngleTo(dz).Radians);

                    Transform[i * 3 + 1, i * 3 + 0] = Math.Cos(dy0.AngleTo(dx).Radians);
                    Transform[i * 3 + 1, i * 3 + 1] = Math.Cos(dy0.AngleTo(dy).Radians);
                    Transform[i * 3 + 1, i * 3 + 2] = Math.Cos(dy0.AngleTo(dz).Radians);

                    Transform[i * 3 + 2, i * 3 + 0] = Math.Cos(dyn.AngleTo(dx).Radians);
                    Transform[i * 3 + 2, i * 3 + 1] = Math.Cos(dyn.AngleTo(dy).Radians);
                    Transform[i * 3 + 2, i * 3 + 2] = Math.Cos(dyn.AngleTo(dz).Radians);
                }

                double A = (p10.X * (p20.Y - p30.Y) + p20.X * (p30.Y - p10.Y) + p30.X * (p10.Y - p20.Y)) / 2;

                double[,] MatrixB = new double[3, 3 * 3];
                MatrixB[0, 0] = (1 / (2 * A)) * (p20.Y - p30.Y);
                MatrixB[1, 1] = (1 / (2 * A)) * (p30.X - p20.X);
                MatrixB[2, 0] = (1 / (2 * A)) * (p30.X - p20.X);
                MatrixB[2, 1] = (1 / (2 * A)) * (p20.Y - p30.Y);

                MatrixB[0, 3] = (1 / (2 * A)) * (p30.Y - p10.Y);
                MatrixB[1, 4] = (1 / (2 * A)) * (p10.X - p30.X);
                MatrixB[2, 3] = (1 / (2 * A)) * (p10.X - p30.X);
                MatrixB[2, 4] = (1 / (2 * A)) * (p30.Y - p10.Y);

                MatrixB[0, 6] = (1 / (2 * A)) * (p10.Y - p20.Y);
                MatrixB[1, 7] = (1 / (2 * A)) * (p20.X - p10.X);
                MatrixB[2, 6] = (1 / (2 * A)) * (p20.X - p10.X);
                MatrixB[2, 7] = (1 / (2 * A)) * (p10.Y - p20.Y);

                Matrix<double> T = Matrix<double>.Build.DenseOfArray(Transform);
                Console.WriteLine(T);
//.........这里部分代码省略.........
开发者ID:JGEsteves89,项目名称:BlankCalculator,代码行数:101,代码来源:NewtonRaphsonFiniteSolver.cs


注:本文中的Point3D.ToVector方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。