本文整理汇总了C#中Gaussian.SetMeanAndVariance方法的典型用法代码示例。如果您正苦于以下问题:C# Gaussian.SetMeanAndVariance方法的具体用法?C# Gaussian.SetMeanAndVariance怎么用?C# Gaussian.SetMeanAndVariance使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Gaussian
的用法示例。
在下文中一共展示了Gaussian.SetMeanAndVariance方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: ProductAverageLogarithm
/// <summary>
/// VMP message to 'product'
/// </summary>
/// <param name="A">Constant value for 'a'.</param>
/// <param name="B">Incoming message from 'b'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="result">Modified to contain the outgoing message</param>
/// <returns><paramref name="result"/></returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'product' as the random arguments are varied.
/// The formula is <c>proj[sum_(b) p(b) factor(product,a,b)]</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="B"/> is not a proper distribution</exception>
public static Gaussian ProductAverageLogarithm(double A, [SkipIfUniform] Beta B)
{
double mb, vb;
B.GetMeanAndVariance(out mb, out vb);
Gaussian result = new Gaussian();
result.SetMeanAndVariance(A * mb, A * A * vb);
return result;
}
示例2: InnerProductAverageLogarithm
/// <summary>
/// VMP message to 'innerProduct'
/// </summary>
/// <param name="A">Constant value for 'a'.</param>
/// <param name="BMean">Buffer 'BMean'.</param>
/// <param name="BVariance">Buffer 'BVariance'.</param>
/// <returns>The outgoing VMP message to the 'innerProduct' argument</returns>
/// <remarks><para>
/// The outgoing message is the factor viewed as a function of 'innerProduct' conditioned on the given values.
/// </para></remarks>
public static Gaussian InnerProductAverageLogarithm(Vector A, Vector BMean, PositiveDefiniteMatrix BVariance)
{
Gaussian result = new Gaussian();
// Uses John Winn's rule for deterministic factors.
// Strict variational inference would set the variance to 0.
// p(x) = N(a' E[b], a' var(b) a)
result.SetMeanAndVariance(A.Inner(BMean), BVariance.QuadraticForm(A));
return result;
}
示例3: SumAverageLogarithm
/// <summary>
/// VMP message to 'Sum'
/// </summary>
/// <param name="A">Incoming message from 'A'.</param>
/// <param name="B">Constant value for 'B'.</param>
/// <returns>The outgoing VMP message to the 'Sum' argument</returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'Sum' as the random arguments are varied.
/// The formula is <c>proj[sum_(A) p(A) factor(Sum,A,B)]</c>.
/// </para></remarks>
public static Gaussian SumAverageLogarithm(DistributionStructArray<Bernoulli, bool> A, [SkipIfUniform] Vector B)
{
Gaussian result = new Gaussian();
// p(x|a,b) = N(E[a]'*E[b], E[b]'*var(a)*E[b] + E[a]'*var(b)*E[a] + trace(var(a)*var(b)))
Vector ma = Vector.Zero(A.Count);
Vector va = Vector.Zero(A.Count);
for (int i = 0; i < A.Count; i++) {
ma[i] = A[i].GetMean();
va[i] = A[i].GetVariance();
}
// Uses John Winn's rule for deterministic factors.
// Strict variational inference would set the variance to 0.
var MeanOfBSquared = Vector.Zero(B.Count);
MeanOfBSquared.SetToFunction(B, x => x * x);
result.SetMeanAndVariance(ma.Inner(B), va.Inner(MeanOfBSquared));
return result;
}
示例4: XAverageLogarithm
/// <summary>
/// VMP message to 'X'
/// </summary>
/// <param name="A">Incoming message from 'A'. Must be a proper distribution. If all elements are uniform, the result will be uniform.</param>
/// <param name="B">Incoming message from 'B'. Must be a proper distribution. If all elements are uniform, the result will be uniform.</param>
/// <param name="MeanOfB">Buffer 'MeanOfB'.</param>
/// <param name="CovarianceOfB">Buffer 'CovarianceOfB'.</param>
/// <param name="result">Modified to contain the outgoing message</param>
/// <returns><paramref name="result"/></returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'X' as the random arguments are varied.
/// The formula is <c>proj[sum_(A,B) p(A,B) factor(X,A,B)]</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="A"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="B"/> is not a proper distribution</exception>
public static Gaussian XAverageLogarithm([SkipIfAllUniform] GaussianArray A, [SkipIfAllUniform] VectorGaussian B, Vector MeanOfB, PositiveDefiniteMatrix CovarianceOfB)
{
int K = MeanOfB.Count;
// p(x|a,b) = N(E[a]'*E[b], E[b]'*var(a)*E[b] + E[a]'*var(b)*E[a] + trace(var(a)*var(b)))
var ma = Vector.Zero(K);
var va = Vector.Zero(K);
for (int k = 0; k < K; k++) {
double m, v;
A[k].GetMeanAndVariance(out m, out v);
ma[k] = m;
va[k] = v;
}
// Uses John Winn's rule for deterministic factors.
// Strict variational inference would set the variance to 0.
var mbj2 = Vector.Zero(K);
mbj2.SetToFunction(MeanOfB, x => x * x);
// slooow
Gaussian result = new Gaussian();
result.SetMeanAndVariance(ma.Inner(MeanOfB), va.Inner(mbj2) + CovarianceOfB.QuadraticForm(ma) + va.Inner(CovarianceOfB.Diagonal()));
if (result.Precision < 0)
throw new ApplicationException("improper message");
return result;
}
示例5: UpperBoundAverageConditional
public static Gaussian UpperBoundAverageConditional([SkipIfUniform] Bernoulli isBetween, Gaussian X, Gaussian lowerBound, Gaussian upperBound)
{
Gaussian result = new Gaussian();
if(isBetween.IsUniform()) return result;
if (upperBound.IsPointMass)
{
result.SetToUniform(); // TODO: return the limiting distribution
}
else if (X.IsUniform())
{
if (lowerBound.IsUniform() || upperBound.IsUniform())
{
result.SetToUniform();
}
else if (isBetween.IsPointMass && isBetween.Point)
{
double ml, vl, mu, vu;
lowerBound.GetMeanAndVariance(out ml, out vl);
upperBound.GetMeanAndVariance(out mu, out vu);
double vlu = vl + vu;
double alpha = Math.Exp(Gaussian.GetLogProb(ml, mu, vlu) - MMath.NormalCdfLn((mu - ml) / Math.Sqrt(vlu)));
double alphaU = 1.0 / (mu - ml + vlu * alpha);
double betaU = alphaU * (alphaU - alpha);
result.SetMeanAndVariance(mu + vu * alphaU, vu - vu * vu * betaU);
result.SetToRatio(result, upperBound);
}
else throw new NotImplementedException();
}
else if (upperBound.IsUniform())
{
if (isBetween.IsPointMass && !isBetween.Point)
{
// lowerBound <= upperBound <= X
// upperBound is not a point mass so upperBound==X is impossible
return XAverageConditional(true, upperBound, lowerBound, X);
}
else
{
result.SetToUniform();
}
}
else
{
double logZ = LogAverageFactor(isBetween, X, lowerBound, upperBound);
if (Double.IsNegativeInfinity(logZ)) throw new AllZeroException();
double d_p = 2 * isBetween.GetProbTrue() - 1;
double yl, yu, r, invSqrtVxl, invSqrtVxu;
GetDiffMeanAndVariance(X, lowerBound, upperBound, out yl, out yu, out r, out invSqrtVxl, out invSqrtVxu);
// since upperBound is not a point mass, -1 < r <= 0 and invSqrtVxu is finite
// since upperBound is not uniform and X is not uniform, invSqrtVxu > 0
// yu is always finite. yl may be infinity, in which case r = 0.
double logPhiU = Math.Log(invSqrtVxu) + Gaussian.GetLogProb(yu, 0, 1) + MMath.NormalCdfLn((yl - r * yu) / Math.Sqrt(1 - r * r));
double alphaU = d_p * Math.Exp(logPhiU - logZ);
// (mu - mx) / (vx + vu) = yu*invSqrtVxu
double betaU = alphaU * (alphaU + yu * invSqrtVxu);
if (r != 0)
{
double logPhiR = -2 * MMath.LnSqrt2PI - 0.5 * Math.Log(1 - r * r) - 0.5 * (yu * yu + yl * (yl - 2 * r * yu)) / (1 - r * r);
double c = d_p * r * Math.Exp(logPhiR - logZ);
betaU += c * invSqrtVxu * invSqrtVxu;
}
double weight = betaU / (upperBound.Precision - betaU);
if (ForceProper && weight < 0) weight = 0;
result.Precision = weight * upperBound.Precision;
result.MeanTimesPrecision = weight * (upperBound.MeanTimesPrecision + alphaU) + alphaU;
}
if (Double.IsNaN(result.Precision) || Double.IsNaN(result.MeanTimesPrecision)) throw new ApplicationException("result is NaN");
return result;
}
示例6: XAverageConditional
/// <summary>
/// EP message to 'x'
/// </summary>
/// <param name="isBetween">Incoming message from 'isBetween'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="X">Incoming message from 'x'.</param>
/// <param name="lowerBound">Constant value for 'lowerBound'.</param>
/// <param name="upperBound">Constant value for 'upperBound'.</param>
/// <returns>The outgoing EP message to the 'x' argument</returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'x' as the random arguments are varied.
/// The formula is <c>proj[p(x) sum_(isBetween) p(isBetween) factor(isBetween,x,lowerBound,upperBound)]/p(x)</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="isBetween"/> is not a proper distribution</exception>
public static Gaussian XAverageConditional([SkipIfUniform] Bernoulli isBetween, Gaussian X, double lowerBound, double upperBound)
{
Gaussian result = new Gaussian();
//return XAverageConditional(isBetween, X, Gaussian.PointMass(lowerBound), Gaussian.PointMass(upperBound), result);
if (X.IsPointMass)
{
result.SetToUniform();
}
else if (X.IsUniform())
{
if (Double.IsInfinity(lowerBound) || Double.IsInfinity(upperBound) ||
!Double.IsPositiveInfinity(isBetween.LogOdds))
{
result.SetToUniform();
}
else
{
double diff = upperBound - lowerBound;
result.SetMeanAndVariance((lowerBound + upperBound) / 2, diff * diff / 12);
}
}
else
{
// X is not a point mass or uniform
double mx, vx;
X.GetMeanAndVariance(out mx, out vx);
if (double.IsPositiveInfinity(upperBound) && !double.IsInfinity(lowerBound)) {
Gaussian Xshifted = new Gaussian(mx - lowerBound, vx);
Gaussian XshiftedPost = Xshifted*IsPositiveOp.XAverageConditional(isBetween, Xshifted);
double mt,vt;
XshiftedPost.GetMeanAndVariance(out mt, out vt);
Gaussian XPost = new Gaussian(mt + lowerBound, vt);
return XPost/X;
}
double logZ = LogAverageFactor(isBetween, X, lowerBound, upperBound);
double d_p = 2 * isBetween.GetProbTrue() - 1;
double logPhiL = Gaussian.GetLogProb(lowerBound, mx, vx);
double alphaL = d_p * Math.Exp(logPhiL - logZ);
double logPhiU = Gaussian.GetLogProb(upperBound, mx, vx);
double alphaU = d_p * Math.Exp(logPhiU - logZ);
double alphaX = alphaL - alphaU;
#if false
// minka: testing numerical accuracy
double diff = upperBound - lowerBound;
double center = (lowerBound+upperBound)/2;
double logNdiff = diff*(-X.MeanTimesPrecision + center*X.Precision);
//logNdiff = logPhiL - logPhiU;
if(logNdiff >= 0) {
alphaX = d_p*Math.Exp(MMath.LogExpMinus1(logNdiff) + logPhiU-logZ);
} else {
alphaX = -d_p*Math.Exp(MMath.LogExpMinus1(-logNdiff) + logPhiL-logZ);
}
double m = mx + vx*alphaX;
#endif
double betaX = alphaX * alphaX;
if (alphaU != 0.0) betaX += (upperBound - mx) / vx * alphaU;
if (alphaL != 0.0) betaX -= (lowerBound - mx) / vx * alphaL;
double weight = betaX / (X.Precision - betaX);
if (ForceProper && weight < 0) weight = 0;
result.Precision = weight * X.Precision;
result.MeanTimesPrecision = weight * (X.MeanTimesPrecision + alphaX) + alphaX;
if (Double.IsNaN(result.Precision) || Double.IsNaN(result.MeanTimesPrecision)) throw new ApplicationException("result is NaN");
}
return result;
}
示例7: SampleAverageConditional
//.........这里部分代码省略.........
} else if (mean.IsUniform() || precision.IsUniform()) {
result.SetToUniform();
} else if (sample.IsPointMass) {
// The correct answer here is not uniform, but rather a limit.
// However it doesn't really matter what we return since multiplication by a point mass
// always yields a point mass.
result.SetToUniform();
} else if (!precision.IsProper()) {
throw new ImproperMessageException(precision);
} else {
// The formula is int_prec int_mean N(x;mean,1/prec) p(x) p(mean) p(prec) =
// int_prec N(x; mm, mv + 1/prec) p(x) p(prec) =
// int_prec N(x; new xm, new xv) N(xm; mm, mv + xv + 1/prec) p(prec)
// Let R = Prec/(Prec + mean.Prec)
// new xv = inv(R*mean.Prec + sample.Prec)
// new xm = xv*(R*mean.PM + sample.PM)
// In the case where sample and mean are improper distributions,
// we must only consider values of prec for which (new xv > 0).
// This happens when R*mean.Prec > -sample.Prec
// As a function of Prec, R*mean.Prec has a singularity at Prec=-mean.Prec
// This function is greater than a threshold when Prec is sufficiently small or sufficiently large.
// Therefore we construct an interval of Precs to exclude from the integration.
double xm, xv, mm, mv;
sample.GetMeanAndVarianceImproper(out xm, out xv);
mean.GetMeanAndVarianceImproper(out mm, out mv);
double lowerBound = 0;
double upperBound = Double.PositiveInfinity;
bool precisionIsBetween = true;
if (mean.Precision >= 0) {
if (sample.Precision < -mean.Precision) throw new ImproperMessageException(sample);
//lowerBound = -mean.Precision * sample.Precision / (mean.Precision + sample.Precision);
lowerBound = -1.0 / (xv + mv);
} else { // mean.Precision < 0
if (sample.Precision < 0) {
precisionIsBetween = true;
lowerBound = -1.0 / (xv + mv);
upperBound = -mean.Precision;
} else if (sample.Precision < -mean.Precision) {
precisionIsBetween = true;
lowerBound = 0;
upperBound = -mean.Precision;
} else {
// in this case, the precision should NOT be in this interval.
precisionIsBetween = false;
lowerBound = -mean.Precision;
lowerBound = -1.0 / (xv + mv);
}
}
double[] nodes = new double[QuadratureNodeCount];
double[] weights = new double[nodes.Length];
QuadratureNodesAndWeights(precision, nodes, weights);
double Z = 0, rmean = 0, rvariance = 0;
for (int i = 0; i < nodes.Length; i++) {
double newVar, newMean;
Assert.IsTrue(nodes[i] > 0);
if ((nodes[i] > lowerBound && nodes[i] < upperBound) != precisionIsBetween) continue;
// the following works even if sample is uniform. (sample.Precision == 0)
if (mean.IsPointMass) {
// take limit mean.Precision -> Inf
newVar = 1.0 / (nodes[i] + sample.Precision);
newMean = newVar * (nodes[i] * mean.Point + sample.MeanTimesPrecision);
} else {
// mean.Precision < Inf
double R = nodes[i] / (nodes[i] + mean.Precision);
newVar = 1.0 / (R * mean.Precision + sample.Precision);
newMean = newVar * (R * mean.MeanTimesPrecision + sample.MeanTimesPrecision);
}
double f;
// If p(x) is uniform, xv=Inf and the term N(xm; mm, mv + xv + 1/prec) goes away
if (sample.IsUniform())
f = weights[i];
else
f = weights[i] * Math.Exp(Gaussian.GetLogProb(xm, mm, xv + mv + 1.0 / nodes[i]));
double fm = f * newMean;
double fmm = f * (newVar + newMean * newMean);
Z += f;
rmean += fm;
rvariance += fmm;
}
if (Z == 0.0) {
//throw new Exception("Quadrature failed");
//Console.WriteLine("Warning: Quadrature found zero mass. Results may be inaccurate.");
result.SetToUniform();
return result;
}
double s = 1.0 / Z;
rmean *= s;
rvariance = rvariance * s - rmean * rmean;
if (Double.IsInfinity(rmean)) {
result.SetToUniform();
} else {
result.SetMeanAndVariance(rmean, rvariance);
if (ForceProper) result.SetToRatioProper(result, sample);
else result.SetToRatio(result, sample);
}
}
return result;
}
示例8: AAverageLogarithm
/// <summary>
/// VMP message to 'A'
/// </summary>
/// <param name="Sum">Incoming message from 'Sum'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="b">Incoming message from 'B'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <returns>The outgoing VMP message to the 'A' argument</returns>
/// <remarks><para>
/// The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except 'A'.
/// Because the factor is deterministic, 'Sum' is integrated out before taking the logarithm.
/// The formula is <c>exp(sum_(B) p(B) log(sum_Sum p(Sum) factor(Sum,A,B)))</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="Sum"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="b"/> is not a proper distribution</exception>
public static Gaussian AAverageLogarithm([SkipIfUniform, Proper] Gaussian Sum, [Proper] Gaussian b)
{
Gaussian result = new Gaussian();
if (Sum.IsUniform()) {
result.SetToUniform();
} else if (Sum.Precision < 0) {
throw new ImproperMessageException(Sum);
} else {
// p(a|sum,b) = N(E[sum] - E[b], var(sum) )
double ms, vs;
double mb = b.GetMean();
Sum.GetMeanAndVariance(out ms, out vs);
result.SetMeanAndVariance(ms - mb, vs);
}
return result;
}
示例9: AAverageConditional
public static Gaussian AAverageConditional([SkipIfUniform] Gaussian Product, Gaussian A, [SkipIfUniform] Gaussian B)
{
if (B.IsPointMass) return AAverageConditional(Product, B.Point);
if (A.IsPointMass || Product.IsUniform()) return Gaussian.Uniform();
Gaussian result = new Gaussian();
// algorithm: quadrature on A from -1 to 1, plus quadrature on 1/A from -1 to 1.
double mProduct, vProduct;
Product.GetMeanAndVariance(out mProduct, out vProduct);
double mA, vA;
A.GetMeanAndVariance(out mA, out vA);
double mB, vB;
B.GetMeanAndVariance(out mB, out vB);
double z = 0, sumA = 0, sumA2 = 0;
for (int i = 0; i <= QuadratureNodeCount; i++) {
double a = (2.0 * i) / QuadratureNodeCount - 1;
double logfA = Gaussian.GetLogProb(mProduct, a * mB, vProduct + a * a * vB) + Gaussian.GetLogProb(a, mA, vA);
double fA = Math.Exp(logfA);
z += fA;
sumA += a * fA;
sumA2 += a * a * fA;
double invA = a;
a = 1.0 / invA;
double logfInvA = Gaussian.GetLogProb(mProduct * invA, mB, vProduct * invA * invA + vB) + Gaussian.GetLogProb(a, mA, vA) - Math.Log(Math.Abs(invA + Double.Epsilon));
double fInvA = Math.Exp(logfInvA);
z += fInvA;
sumA += a * fInvA;
sumA2 += a * a * fInvA;
}
double mean = sumA / z;
double var = sumA2 / z - mean * mean;
result.SetMeanAndVariance(mean, var);
if (ForceProper) result.SetToRatioProper(result, A);
else result.SetToRatio(result, A);
return result;
}
示例10: ProductAverageLogarithm
/// <summary>
/// VMP message to 'product'
/// </summary>
/// <param name="A">Incoming message from 'a'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="B">Incoming message from 'b'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <returns>The outgoing VMP message to the 'product' argument</returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'product' as the random arguments are varied.
/// The formula is <c>proj[sum_(a,b) p(a,b) factor(product,a,b)]</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="A"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="B"/> is not a proper distribution</exception>
public static Gaussian ProductAverageLogarithm([SkipIfUniform] Gaussian A, [SkipIfUniform] Gaussian B)
{
Gaussian result = new Gaussian();
// p(x|a,b) = N(E[a]*E[b], E[b]^2*var(a) + E[a]^2*var(b) + var(a)*var(b))
double ma, va, mb, vb;
A.GetMeanAndVariance(out ma, out va);
B.GetMeanAndVariance(out mb, out vb);
// Uses John Winn's rule for deterministic factors.
// Strict variational inference would set the variance to 0.
result.SetMeanAndVariance(ma * mb, mb * mb * va + ma * ma * vb + va * vb);
return result;
}
示例11: DAverageLogarithm
/// <summary>
/// VMP message to 'd'
/// </summary>
/// <param name="exp">Incoming message from 'exp'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="d">Incoming message from 'd'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="to_d">Previous outgoing message to 'd'.</param>
/// <returns>The outgoing VMP message to the 'd' argument</returns>
/// <remarks><para>
/// The outgoing message is the factor viewed as a function of 'd' with 'exp' integrated out.
/// The formula is <c>sum_exp p(exp) factor(exp,d)</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="exp"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="d"/> is not a proper distribution</exception>
public static Gaussian DAverageLogarithm([Proper] Gamma exp, [Proper, Stochastic] Gaussian d, Gaussian to_d)
{
if (exp.IsPointMass) return ExpOp.DAverageLogarithm(exp.Point);
double m, v;
d.GetMeanAndVariance(out m, out v);
Gaussian msg = new Gaussian();
double mu, s2;
var prior = d / to_d;
prior.GetMeanAndVariance(out mu, out s2);
var z = Vector.Zero(2);
z[0] = m;
z[1] = Math.Log(v);
double startingValue = GradientAndValueAtPoint(mu, s2, z, exp.Shape, exp.Rate, null);
var s = new BFGS();
int evalCounter = 0;
s.MaximumStep = 1e3;
s.MaximumIterations = 100;
s.Epsilon = 1e-5;
s.convergenceCriteria = BFGS.ConvergenceCriteria.Objective;
z = s.Run(z, 1.0, delegate(Vector y, ref Vector grad) { evalCounter++; return GradientAndValueAtPoint(mu, s2, y, exp.Shape, exp.Rate, grad); });
m = z[0];
v = Math.Exp(z[1]);
to_d.SetMeanAndVariance(m, v);
to_d.SetToRatio(to_d, prior);
double endValue = GradientAndValueAtPoint(mu, s2, z, exp.Shape, exp.Rate, null);
//Console.WriteLine("Went from {0} to {1} in {2} steps, {3} evals", startingValue, endValue, s.IterationsPerformed, evalCounter);
if (startingValue < endValue)
Console.WriteLine("Warning: BFGS resulted in an increased objective function");
return to_d;
/* ---------------- NEWTON ITERATION VERSION 1 -------------------
double meanTimesPrec, prec;
d.GetNatural(out meanTimesPrec, out prec);
Matrix K = new Matrix(2, 2);
K[0, 0]=1/prec; // d2K by dmu^2
K[1, 0]=K[0, 1]=-meanTimesPrec/(prec*prec);
K[1, 1]=meanTimesPrec*meanTimesPrec/Math.Pow(prec, 3)+1/(2*prec*prec);
double[,,] Kprime = new double[2, 2, 2];
Kprime[0, 0, 0]=0;
Kprime[0, 0, 1]=Kprime[0, 1, 0]=Kprime[1, 0, 0]=-1/(prec*prec);
Kprime[0, 1, 1]=Kprime[1, 1, 0]=Kprime[1, 0, 1]=2*meanTimesPrec/Math.Pow(prec, 3);
Kprime[1, 1, 1]=-3*meanTimesPrec*meanTimesPrec/Math.Pow(prec, 4)-1/Math.Pow(prec, 3);
Vector gradS = new Vector(2);
gradS[0]=(exp.Shape-1)/prec-exp.Rate/prec*Math.Exp((meanTimesPrec+.5)/prec);
gradS[1]=-(exp.Shape-1)*meanTimesPrec/(prec*prec)+exp.Rate*(meanTimesPrec+.5)/(prec*prec)*Math.Exp((meanTimesPrec+.5)/prec);
Matrix grad2S = new Matrix(2, 2);
grad2S[0, 0]=-exp.Rate/(prec*prec)*Math.Exp((meanTimesPrec+.5)/prec);
grad2S[0, 1]=grad2S[1, 0]=-(exp.Shape-1)/(prec*prec)+exp.Rate*(1/(prec*prec)+(meanTimesPrec+.5)/Math.Pow(prec, 3))*Math.Exp((meanTimesPrec+.5)/prec);
grad2S[1, 1]=2*(exp.Shape-1)*meanTimesPrec/Math.Pow(prec, 3)-exp.Rate*(meanTimesPrec+.5)/(prec*prec)*(2/prec+(meanTimesPrec+.5)/(prec*prec))*Math.Exp((meanTimesPrec+.5)/prec);
Vector phi = new Vector(new double[] { result.MeanTimesPrecision, result.Precision });
Vector gradKL = K*phi-gradS;
Matrix hessianKL = K - grad2S;
for (int i=0; i<2; i++)
for (int j=0; j<2; j++)
for (int k=0; k<2; k++)
hessianKL[i, j]+=Kprime[i, j, k]*phi[k];
double step = 1;
Vector direction = GammaFromShapeAndRate.twoByTwoInverse(hessianKL)*gradKL;
Vector newPhi = phi - step * direction;
result.SetNatural(newPhi[0], newPhi[1]);
return result;
---------------- NEWTON ITERATION VERSION 2 -------------------
double mean, variance;
d.GetMeanAndVariance(out mean, out variance);
Gaussian prior = d / result;
double mean1, variance1;
prior.GetMeanAndVariance(out mean1, out variance1);
Vector gradKL = new Vector(2);
gradKL[0]=-(exp.Shape-1)+exp.Rate*Math.Exp(mean+variance/2)+mean/variance1-mean1/variance1;
gradKL[1]=-1/(2*variance)+exp.Rate*Math.Exp(mean+variance/2)+1/(2*variance1);
Matrix hessianKL = new Matrix(2, 2);
hessianKL[0, 0]=exp.Rate*Math.Exp(mean+variance/2)+1/variance1;
hessianKL[0, 1]=hessianKL[1, 0]=.5*exp.Rate*Math.Exp(mean+variance/2);
hessianKL[1, 1]=1/(2*variance*variance)+exp.Rate*Math.Exp(mean+variance/2)/4;
result.GetMeanAndVariance(out mean, out variance);
if (double.IsInfinity(variance))
variance=1000;
Vector theta = new Vector(new double[] { mean, variance });
theta -= GammaFromShapeAndRate.twoByTwoInverse(hessianKL)*gradKL;
result.SetMeanAndVariance(theta[0], theta[1]);
return result;
----------------------------------------------------------------- */
}
示例12: BAverageLogarithm
/// <summary>
/// VMP message to 'b'
/// </summary>
/// <param name="Difference">Incoming message from 'difference'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="a">Incoming message from 'a'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <returns>The outgoing VMP message to the 'b' argument</returns>
/// <remarks><para>
/// The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except 'b'.
/// Because the factor is deterministic, 'difference' is integrated out before taking the logarithm.
/// The formula is <c>exp(sum_(a) p(a) log(sum_difference p(difference) factor(difference,a,b)))</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="Difference"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="a"/> is not a proper distribution</exception>
public static Gaussian BAverageLogarithm([SkipIfUniform, Proper] Gaussian Difference, [Proper] Gaussian a)
{
Gaussian result = new Gaussian();
if (Difference.IsUniform()) {
result.SetToUniform();
} else if (Difference.Precision < 0) {
throw new ImproperMessageException(Difference);
} else {
// p(b|diff,a) = N(E[a] - E[diff], var(diff) )
double ms, vs;
double ma = a.GetMean();
Difference.GetMeanAndVariance(out ms, out vs);
result.SetMeanAndVariance(ma - ms, vs);
}
return result;
}
示例13: LogAverageLogarithm
/// <summary>
/// VMP message to 'log'
/// </summary>
/// <param name="log">Incoming message from 'log'.</param>
/// <param name="d">Incoming message from 'd'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="result">Modified to contain the outgoing message</param>
/// <returns><paramref name="result"/></returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'log' as the random arguments are varied.
/// The formula is <c>proj[sum_(d) p(d) factor(log,d)]</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="d"/> is not a proper distribution</exception>
public static Gaussian LogAverageLogarithm(Gaussian log, [SkipIfUniform] Gamma d, Gaussian result)
{
if (d.IsPointMass)
return LogAverageLogarithm(log, d.Point, result);
result.SetMeanAndVariance(d.GetMeanLog(), MMath.Trigamma(d.Shape));
return result;
}
示例14: getClickObservations
// Get click observations for each chunk and label class
static private Gaussian[][][] getClickObservations(int numLabs, int chunkSize, int[] labels, int[] clicks, int[] exams)
{
int nData = labels.Length;
int numChunks = (nData + chunkSize - 1) / chunkSize;
Gaussian[][][] chunks = new Gaussian[numChunks][][];
int[] obsX = new int[numLabs];
int startChunk = 0;
int endChunk = 0;
for (int c = 0; c < numChunks; c++) {
startChunk = endChunk;
endChunk = startChunk + chunkSize;
if (endChunk > nData)
endChunk = nData;
int[] labCnts = getLabelCounts(numLabs, labels, startChunk, endChunk);
chunks[c] = new Gaussian[numLabs][];
Gaussian[][] currChunk = chunks[c];
for (int l = 0; l < numLabs; l++) {
currChunk[l] = new Gaussian[labCnts[l]];
obsX[l] = 0;
}
for (int d = startChunk; d < endChunk; d++) {
int lab = labels[d];
int nC = clicks[d];
int nE = exams[d];
int nNC = nE - nC;
double b0 = 1.0 + nC; // Observations of clicks
double b1 = 1.0 + nNC; // Observations of no clicks
Beta b = new Beta(b0, b1);
double m, v;
b.GetMeanAndVariance(out m, out v);
Gaussian g = new Gaussian();
g.SetMeanAndVariance(m, v);
currChunk[lab][obsX[lab]++] = g;
}
}
return chunks;
}