本文整理汇总了C#中Gaussian.GetMean方法的典型用法代码示例。如果您正苦于以下问题:C# Gaussian.GetMean方法的具体用法?C# Gaussian.GetMean怎么用?C# Gaussian.GetMean使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Gaussian
的用法示例。
在下文中一共展示了Gaussian.GetMean方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: LogProbBetween
//-- Constant bounds --------------------------------------------------------------------------------
/// <summary>
/// The logarithm of the probability that L <= X < U.
/// </summary>
/// <param name="X"></param>
/// <param name="L">Can be negative infinity.</param>
/// <param name="U">Can be positive infinity.</param>
/// <returns></returns>
public static double LogProbBetween(Gaussian X, double L, double U)
{
if (L > U) throw new AllZeroException("low > high (" + L + " > " + U + ")");
if (X.IsPointMass)
{
return Factor.IsBetween(X.Point, L, U) ? 0.0 : Double.NegativeInfinity;
}
else if (X.IsUniform())
{
if (Double.IsNegativeInfinity(L))
{
if (Double.IsPositiveInfinity(U)) return 0.0; // always between
else return -MMath.Ln2; // between half the time
}
else if (Double.IsPositiveInfinity(U)) return -MMath.Ln2; // between half the time
else return Double.NegativeInfinity; // never between two finite numbers
}
else
{
double sqrtPrec = Math.Sqrt(X.Precision);
double mx = X.GetMean();
double pl = MMath.NormalCdfLn(sqrtPrec * (L - mx)); // log(p(x <= L))
double pu = MMath.NormalCdfLn(sqrtPrec * (U - mx)); // log(p(x <= U))
if (pl == pu) return Double.NegativeInfinity;
if (Double.IsNegativeInfinity(pl)) return pu;
// log(NormalCdf(yu) - NormalCdf(yl)) = NormalCdfLn(yu) + log(1 - NormalCdf(yl)/NormalCdf(yu))
return pu + MMath.Log1MinusExp(pl - pu);
}
}
示例2: LogisticProposalDistribution
/// <summary>
/// Find the Laplace approximation for Beta(Logistic(x)) * Gaussian(x))
/// </summary>
/// <param name="beta">Beta distribution</param>
/// <param name="gauss">Gaussian distribution</param>
/// <returns>A proposal distribution</returns>
public static Gaussian LogisticProposalDistribution(Beta beta, Gaussian gauss)
{
if (beta.IsUniform())
return new Gaussian(gauss);
// if gauss is uniform, m,p = 0 below, and the following code will just ignore the Gaussian
// and do a Laplace approximation for Beta(Logistic(x))
double c = beta.TrueCount-1;
double d = beta.FalseCount-1;
double m = gauss.GetMean();
double p = gauss.Precision;
// We want to find the mode of
// ln(g(x)) = c.ln(f(x)) + d.ln(1 - f(x)) - 0.5p((x - m)^2) + constant
// First deriv:
// h(x) = (ln(g(x))' = c.(1 - f(x)) - d.f(x) - p(x-m)
// Second deriv:
// h'(x) = (ln(g(x))' = -(c+d).f'(x) - p
// Use Newton-Raphson to find unique root of h(x).
// g(x) is log-concave so Newton-Raphson should converge quickly.
// Set the initial point by projecting beta
// to a Gaussian and taking the mean of the product:
double bMean, bVar;
beta.GetMeanAndVariance(out bMean, out bVar);
Gaussian prod = new Gaussian();
double invLogisticMean = Math.Log(bMean) - Math.Log(1.0-bMean);
prod.SetToProduct(Gaussian.FromMeanAndVariance(invLogisticMean, bVar), gauss);
double xnew = prod.GetMean();
double x=0, fx, dfx, hx, dhx=0;
int maxIters = 100; // Should only need a handful of iters
int cnt = 0;
do {
x = xnew;
fx = MMath.Logistic(x);
dfx = fx * (1.0-fx);
// Find the root of h(x)
hx = c * (1.0 - fx) - d * fx - p*(x-m);
dhx = -(c+d)*dfx - p;
xnew = x - (hx / dhx); // The Newton step
if (Math.Abs(x - xnew) < 0.00001)
break;
} while (++cnt < maxIters);
if (cnt >= maxIters)
throw new ApplicationException("Unable to find proposal distribution mode");
return Gaussian.FromMeanAndPrecision(x, -dhx);
}
示例3: BAverageLogarithm
/// <summary>
/// VMP message to 'b'
/// </summary>
/// <param name="ProductExp">Incoming message from 'productExp'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="A">Incoming message from 'a'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="B">Incoming message from 'b'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="to_B">Previous outgoing message to 'B'.</param>
/// <param name="result">Modified to contain the outgoing message</param>
/// <returns><paramref name="result"/></returns>
/// <remarks><para>
/// The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except 'b'.
/// Because the factor is deterministic, 'productExp' is integrated out before taking the logarithm.
/// The formula is <c>exp(sum_(a) p(a) log(sum_productExp p(productExp) factor(productExp,a,b)))</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="ProductExp"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="A"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="B"/> is not a proper distribution</exception>
public static NonconjugateGaussian BAverageLogarithm([SkipIfUniform] Gaussian ProductExp, [Proper, SkipIfUniform] Gaussian A, [Proper, SkipIfUniform] Gaussian B, NonconjugateGaussian to_B, NonconjugateGaussian result)
{
if (B.IsPointMass) return NonconjugateGaussian.Uniform();
if (ProductExp.IsPointMass) return BAverageLogarithm(ProductExp.Point, A);
if (!B.IsProper()) throw new ImproperMessageException(B);
// catch uniform case to avoid 0*Inf
if (ProductExp.IsUniform()) return NonconjugateGaussian.Uniform();
double mx, vx, m, v, mz, vz;
ProductExp.GetMeanAndVariance(out mz, out vz);
A.GetMeanAndVariance(out mx, out vx);
B.GetMeanAndVariance(out m, out v);
//if (mx * mz < 0)
//{
// Console.WriteLine("Warning: mx*mz < 0, setting to uniform");
// result.SetToUniform();
// return result;
//}
double Ex2 = mx * mx + vx;
double grad2_S_m2 = -2 * Ex2 * Math.Exp(2 * m + 2 * v) / vz + mx * mz * Math.Exp(m + .5 * v) / vz;
double grad_m = -Ex2 * Math.Exp(2 * m + 2 * v) / vz + mx * mz * Math.Exp(m + .5 * v) / vz;
double threshold = 10;
double mf, vf, afm1, bf;
if (grad2_S_m2 >= -threshold && mx * mz > 0)
{
mf = Math.Log(mx * mz / Ex2) - 1.5 * v;
vf = (mf - m) / grad_m;
}
else
{
vf = -1 / grad2_S_m2;
mf = m - grad_m / grad2_S_m2;
}
Gaussian priorG;
if (result.IsUniform())
priorG = B;
else
{
var prior = new NonconjugateGaussian();
prior.SetToRatio((new NonconjugateGaussian(B)), to_B);
priorG = prior.GetGaussian();
}
result.MeanTimesPrecision = mf / vf ;
result.Precision = 1 / vf;
var updatedM = new Gaussian(mf,vf) * priorG;
m = updatedM.GetMean();
double grad_S2_v2 = -2 * Ex2 * Math.Exp(2 * m + 2 * v) / vz + .25 * mx * mz * Math.Exp(m + .5 * v) / vz;
double grad_S_v = -Ex2 * Math.Exp(2 * m + 2 * v) / vz + .5 * mx * mz * Math.Exp(m + .5 * v) / vz;
afm1 = -1;
bf = -1;
if (grad2_S_m2 >= -threshold)
{
afm1 = -v * v * grad_S2_v2;
bf = -grad_S_v + afm1 / v;
}
if ((afm1 < 0 || bf < 0) && mx * mz > 0)
{
double v_opt = 2 / 3 * (Math.Log(mx * mz / Ex2 / 2) - m);
if (v_opt != v)
{
bf = v * grad_S_v / (v_opt - v);
afm1 = v_opt * bf;
}
}
if (afm1 < 0 || bf < 0)
{
afm1 = -v * v * grad_S2_v2;
bf = -grad_S_v + afm1 / v;
}
if (afm1 < 0 || bf < 0)
{
result.Shape = 1;
result.Rate = 0;
}
//.........这里部分代码省略.........
示例4: XInit
public static double XInit(Gaussian d)
{
return d.GetMean();
}
示例5: ShapeLocationTimesFactor
private static VectorGaussian ShapeLocationTimesFactor(
Vector point, Gaussian shapeX, Gaussian shapeY, PositiveDefiniteMatrix shapeOrientation)
{
VectorGaussian shapeLocationDistr = VectorGaussian.FromMeanAndVariance(
Vector.FromArray(shapeX.GetMean(), shapeY.GetMean()),
new PositiveDefiniteMatrix(new double[,] { { shapeX.GetVariance(), 0.0 }, { 0.0, shapeY.GetVariance() } }));
VectorGaussian factorDistribution = VectorGaussian.FromMeanAndPrecision(point, shapeOrientation);
VectorGaussian result = new VectorGaussian(2);
result.SetToProduct(shapeLocationDistr, factorDistribution);
return result;
}
示例6: LaplaceMoments
public static void LaplaceMoments(Gaussian q, double[] dlogfx, out double m, out double v)
{
double vx = 1/q.Precision;
double delta = 0.5*dlogfx[2]*vx*vx;
m = q.GetMean() + delta;
v = vx + 4*delta*delta + 0.5*dlogfx[3]*vx*vx*vx;
if (v < 0) throw new Exception();
}
示例7: QxReinitialize
private static double QxReinitialize(Gaussian y, Gamma precision, double x)
{
double init0 = 0;
double init1 = y.GetMean();
double a = precision.Shape;
double b = precision.Rate;
double a2 = -(a+0.5);
double logz0 = a2*Math.Log(b + init0*init0/2) + y.GetLogProb(init0);
double logz1 = a2*Math.Log(b + init1*init1/2) + y.GetLogProb(init1);
double logz = a2*Math.Log(b + x*x/2) + y.GetLogProb(x);
if (logz0 > Math.Max(logz1, logz)) return init0;
else if (logz1 > logz) return init1;
else return x;
}
示例8: Qx
public static Gaussian Qx(Gaussian y, Gamma precision, Gaussian qx)
{
if (y.IsPointMass) return y;
double x = QxReinitialize(y, precision, qx.GetMean());
double r = 0;
for (int iter = 0; iter < 1000; iter++) {
double oldx = x;
double[] dlogfs = dlogfxs(x, precision);
double ddlogf = dlogfs[1];
r = Math.Max(0, -ddlogf);
double t = r*x + dlogfs[0];
x = (t + y.MeanTimesPrecision)/(r + y.Precision);
if (Math.Abs(oldx - x) < 1e-10) break;
//Console.WriteLine("{0}: {1}", iter, x);
if (iter == 1000-1) throw new Exception("not converging");
if (iter % 100 == 99) x = QxReinitialize(y, precision, x);
}
return Gaussian.FromMeanAndPrecision(x, r + y.Precision);
}