本文整理汇总了C#中Gaussian类的典型用法代码示例。如果您正苦于以下问题:C# Gaussian类的具体用法?C# Gaussian怎么用?C# Gaussian使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
Gaussian类属于命名空间,在下文中一共展示了Gaussian类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: LogProbBetween
//-- Constant bounds --------------------------------------------------------------------------------
/// <summary>
/// The logarithm of the probability that L <= X < U.
/// </summary>
/// <param name="X"></param>
/// <param name="L">Can be negative infinity.</param>
/// <param name="U">Can be positive infinity.</param>
/// <returns></returns>
public static double LogProbBetween(Gaussian X, double L, double U)
{
if (L > U) throw new AllZeroException("low > high (" + L + " > " + U + ")");
if (X.IsPointMass)
{
return Factor.IsBetween(X.Point, L, U) ? 0.0 : Double.NegativeInfinity;
}
else if (X.IsUniform())
{
if (Double.IsNegativeInfinity(L))
{
if (Double.IsPositiveInfinity(U)) return 0.0; // always between
else return -MMath.Ln2; // between half the time
}
else if (Double.IsPositiveInfinity(U)) return -MMath.Ln2; // between half the time
else return Double.NegativeInfinity; // never between two finite numbers
}
else
{
double sqrtPrec = Math.Sqrt(X.Precision);
double mx = X.GetMean();
double pl = MMath.NormalCdfLn(sqrtPrec * (L - mx)); // log(p(x <= L))
double pu = MMath.NormalCdfLn(sqrtPrec * (U - mx)); // log(p(x <= U))
if (pl == pu) return Double.NegativeInfinity;
if (Double.IsNegativeInfinity(pl)) return pu;
// log(NormalCdf(yu) - NormalCdf(yl)) = NormalCdfLn(yu) + log(1 - NormalCdf(yl)/NormalCdf(yu))
return pu + MMath.Log1MinusExp(pl - pu);
}
}
示例2: ComputeStats
// logw1 = N(mx;m1,vx+v1) phi((mx1 - m2)/sqrt(vx1+v2))
// a1 = N(mx1;m2,vx1+v2)/phi
internal static void ComputeStats(Gaussian max, Gaussian a, Gaussian b, out double logz,
out double logw1, out double a1, out double vx1, out double mx1,
out double logw2, out double a2, out double vx2, out double mx2)
{
double m1, v1, m2, v2;
a.GetMeanAndVariance(out m1, out v1);
b.GetMeanAndVariance(out m2, out v2);
if (max.IsPointMass) {
vx1 = 0.0;
mx1 = max.Point;
vx2 = 0.0;
mx2 = max.Point;
if (b.IsPointMass) {
if (b.Point > max.Point) throw new AllZeroException();
else if (b.Point == max.Point) {
// the factor reduces to the constraint (max.Point > a)
logw1 = Double.NegativeInfinity;
logw2 = MMath.NormalCdfLn((max.Point - m1)/Math.Sqrt(v1));
logz = logw2;
a1 = 0;
a2 = Math.Exp(Gaussian.GetLogProb(max.Point, m1, v1) - logw2);
return;
} else {
// b.Point < max.Point
// the factor reduces to the constraint (a == max.Point)
throw new NotImplementedException();
}
} else if (a.IsPointMass) throw new NotImplementedException();
} else {
if (a.IsPointMass) {
vx1 = 0.0;
mx1 = a.Point;
} else {
vx1 = 1.0 / (max.Precision + a.Precision);
mx1 = vx1 * (max.MeanTimesPrecision + a.MeanTimesPrecision);
}
if (b.IsPointMass) {
vx2 = 0.0;
mx2 = b.Point;
} else {
vx2 = 1.0 / (max.Precision + b.Precision);
mx2 = vx2 * (max.MeanTimesPrecision + b.MeanTimesPrecision);
}
}
logw1 = max.GetLogAverageOf(a);
double logPhi1 = MMath.NormalCdfLn((mx1 - m2) / Math.Sqrt(vx1 + v2));
logw1 += logPhi1;
logw2 = max.GetLogAverageOf(b);
double logPhi2 = MMath.NormalCdfLn((mx2 - m1) / Math.Sqrt(vx2 + v1));
logw2 += logPhi2;
logz = MMath.LogSumExp(logw1, logw2);
double logN1 = Gaussian.GetLogProb(mx1, m2, vx1 + v2);
a1 = Math.Exp(logN1 - logPhi1);
double logN2 = Gaussian.GetLogProb(mx2, m1, vx2 + v1);
a2 = Math.Exp(logN2 - logPhi2);
}
示例3: InferTomorrowsTime
public Gaussian[] InferTomorrowsTime()
{
Gaussian[] tomorrowsTime = new Gaussian[2];
tomorrowsTime[0] = cyclist1.InferTomorrowsTime();
tomorrowsTime[1] = cyclist2.InferTomorrowsTime();
return tomorrowsTime;
}
示例4: Base_ExpectedValue
public void Base_ExpectedValue()
{
var Mu = 5.0;
var X = new Gaussian(Mu, 2.0);
var E = X.ExpectedValueWithConfidence().Mean;
var Err = Math.Abs(E - Mu) / Mu;
Assert.IsTrue(Err < eps);
}
示例5: LogAverageFactor
/// <summary>
/// Evidence message for EP
/// </summary>
/// <param name="logistic">Constant value for 'logistic'.</param>
/// <param name="x">Incoming message from 'x'.</param>
/// <returns>Logarithm of the factor's average value across the given argument distributions</returns>
/// <remarks><para>
/// The formula for the result is <c>log(sum_(x) p(x) factor(logistic,x))</c>.
/// </para></remarks>
public static double LogAverageFactor(double logistic, Gaussian x)
{
if (logistic >= 1.0 || logistic <= 0.0) return x.GetLogProb(MMath.Logit(logistic));
// p(y,x) = delta(y - 1/(1+exp(-x))) N(x;mx,vx)
// x = log(y/(1-y))
// dx = 1/(y*(1-y))
return x.GetLogProb(MMath.Logit(logistic))/(logistic*(1-logistic));
}
示例6: ProductAverageLogarithm
/// <summary>
/// VMP message to 'product'
/// </summary>
/// <param name="A">Constant value for 'a'.</param>
/// <param name="B">Incoming message from 'b'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="result">Modified to contain the outgoing message</param>
/// <returns><paramref name="result"/></returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'product' as the random arguments are varied.
/// The formula is <c>proj[sum_(b) p(b) factor(product,a,b)]</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="B"/> is not a proper distribution</exception>
public static Gaussian ProductAverageLogarithm(double A, [SkipIfUniform] Beta B)
{
double mb, vb;
B.GetMeanAndVariance(out mb, out vb);
Gaussian result = new Gaussian();
result.SetMeanAndVariance(A * mb, A * A * vb);
return result;
}
示例7: InnerProductAverageLogarithm
/// <summary>
/// VMP message to 'innerProduct'
/// </summary>
/// <param name="AMean">Buffer 'AMean'.</param>
/// <param name="AVariance">Buffer 'AVariance'.</param>
/// <param name="BMean">Buffer 'BMean'.</param>
/// <param name="BVariance">Buffer 'BVariance'.</param>
/// <returns>The outgoing VMP message to the 'innerProduct' argument</returns>
/// <remarks><para>
/// The outgoing message is the factor viewed as a function of 'innerProduct' conditioned on the given values.
/// </para></remarks>
public static Gaussian InnerProductAverageLogarithm(Vector AMean, PositiveDefiniteMatrix AVariance, Vector BMean, PositiveDefiniteMatrix BVariance)
{
Gaussian result = new Gaussian();
// p(x|a,b) = N(E[a]'*E[b], E[b]'*var(a)*E[b] + E[a]'*var(b)*E[a] + trace(var(a)*var(b)))
// Uses John Winn's rule for deterministic factors.
// Strict variational inference would set the variance to 0.
result.SetMeanAndVariance(AMean.Inner(BMean), AVariance.QuadraticForm(BMean) + BVariance.QuadraticForm(AMean) + AVariance.Inner(BVariance));
return result;
}
示例8: UsesAverageLogarithm
public static Gaussian UsesAverageLogarithm(NonconjugateGaussian[] Uses, Gaussian Def, Gaussian result)
{
NonconjugateGaussian prod = Uses[0];
for (int i = 1; i < Uses.Length; i++)
prod.SetToProduct(prod, Uses[i]);
result = prod.GetGaussian(true);
result.SetToProduct(result, Def);
return result;
}
示例9: AAverageLogarithm
/// <summary>
/// VMP message to 'a'
/// </summary>
/// <param name="Product">Incoming message from 'product'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="B">Incoming message from 'b'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="result">Modified to contain the outgoing message</param>
/// <returns><paramref name="result"/></returns>
/// <remarks><para>
/// The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except 'a'.
/// Because the factor is deterministic, 'product' is integrated out before taking the logarithm.
/// The formula is <c>exp(sum_(b) p(b) log(sum_product p(product) factor(product,a,b)))</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="Product"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="B"/> is not a proper distribution</exception>
public static Gaussian AAverageLogarithm([SkipIfUniform] Gaussian Product, [Proper] Beta B)
{
if (B.IsPointMass) return GaussianProductVmpOp.AAverageLogarithm(Product, B.Point);
if (Product.IsPointMass) return AAverageLogarithm(Product.Point, B);
double mb, vb;
B.GetMeanAndVariance(out mb, out vb);
Gaussian result = new Gaussian();
result.Precision = Product.Precision * (vb + mb*mb);
result.MeanTimesPrecision = Product.MeanTimesPrecision * mb;
return result;
}
示例10: TestEnvelope
private static void TestEnvelope()
{
Gaussian gaussian = new Gaussian(1, 1);
ExponentialEnvelope env = new ExponentialEnvelope(double.NegativeInfinity, double.PositiveInfinity, gaussian, new double[] { -2, -1, 0, 1, 2 });
for (int i = 0; i < 10000; i++)
{
double test = env.SampleContinuous();
Console.WriteLine(test);
}
Console.WriteLine("All Worked!");
}
示例11: LogRateAverageLogarithm
/// <summary>
/// Gradient matching VMP message from factor to logOdds variable
/// </summary>
/// <param name="sample">Incoming message from 'sample'.</param>
/// <param name="logOdds">Incoming message. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="result">Previous message sent, used for damping</param>
/// <returns>The outgoing VMP message.</returns>
/// <remarks><para>
/// The outgoing message is the Gaussian approximation to the factor which results in the
/// same derivatives of the KL(q||p) divergence with respect to the parameters of the posterior
/// as if the true factor had been used.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="logOdds"/> is not a proper distribution</exception>
public static Gaussian LogRateAverageLogarithm(int sample, [Proper, SkipIfUniform] Gaussian logRate, Gaussian result)
{
double m,v;
logRate.GetMeanAndVariance(out m,out v);
Gaussian message = new Gaussian();
message.Precision = Math.Exp(m + v / 2);
message.MeanTimesPrecision = (m - 1) * Math.Exp(m + v / 2) + sample;
if (damping == 0)
return message;
else
return (message ^ (1 - damping)) * (result ^ damping);
}
示例12: AAverageLogarithm
/// <summary>
/// VMP message to 'a'
/// </summary>
/// <param name="Product">Incoming message from 'product'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="B">Incoming message from 'b'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <returns>The outgoing VMP message to the 'a' argument</returns>
/// <remarks><para>
/// The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except 'a'.
/// Because the factor is deterministic, 'product' is integrated out before taking the logarithm.
/// The formula is <c>exp(sum_(b) p(b) log(sum_product p(product) factor(product,a,b)))</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="Product"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="B"/> is not a proper distribution</exception>
public static Gaussian AAverageLogarithm([SkipIfUniform] Gaussian Product, [Proper] Gamma B)
{
if (B.IsPointMass) return GaussianProductVmpOp.AAverageLogarithm(Product, B.Point);
if (Product.IsPointMass) return AAverageLogarithm(Product.Point, B);
if (!B.IsProper()) throw new ImproperMessageException(B);
double mb, vb;
B.GetMeanAndVariance(out mb, out vb);
// catch uniform case to avoid 0*Inf
if (Product.IsUniform()) return Product;
Gaussian result = new Gaussian();
result.Precision = Product.Precision * (vb + mb*mb);
result.MeanTimesPrecision = Product.MeanTimesPrecision * mb;
return result;
}
示例13: LogAverageFactor
/// <summary>
/// Evidence message for EP
/// </summary>
/// <param name="isPositive">Incoming message from 'isPositive'.</param>
/// <param name="x">Incoming message from 'x'.</param>
/// <returns>Logarithm of the factor's average value across the given argument distributions</returns>
/// <remarks><para>
/// The formula for the result is <c>log(sum_(isPositive,x) p(isPositive,x) factor(isPositive,x))</c>.
/// </para></remarks>
public static double LogAverageFactor(Bernoulli isPositive, Gaussian x)
{
if (isPositive.IsPointMass && x.Precision == 0) {
double tau = x.MeanTimesPrecision;
if (isPositive.Point && tau < 0) {
// int I(x>0) exp(tau*x) dx = -1/tau
return -Math.Log(-tau);
}
if (!isPositive.Point && tau > 0) {
// int I(x<0) exp(tau*x) dx = 1/tau
return -Math.Log(tau);
}
}
Bernoulli to_isPositive = IsPositiveAverageConditional(x);
return isPositive.GetLogAverageOf(to_isPositive);
}
示例14: Gaussian_Bernoulli_Conditional
public void Gaussian_Bernoulli_Conditional()
{
// arrange
Uncertain<double> X = new Gaussian(1.0, 1.0);
Uncertain<double> Y = new Gaussian(4.0, 2.0);
// act
if ((X > Y).Pr()) {
Assert.Fail("X > Y evaluates true, incorrectly");
}
if ((Y < X).Pr()) {
Assert.Fail("Y < X evaluates true, incorrectly");
}
if (!(Y > X).Pr()) {
Assert.Fail("Y > X evaluates false, incorrectly");
}
if (!(X < Y).Pr()) {
Assert.Fail("X < Y evaluates false, incorrectly");
}
}
示例15: Gaussian_Bernoulli_Mean
public void Gaussian_Bernoulli_Mean()
{
// arrange
Uncertain<double> X = new Gaussian(1.0, 1.0);
Uncertain<double> Y = new Gaussian(3.0, 2.0);
var Z = X > Y;
var sampler = Sampler.Create(Z);
int k = 0;
// act
foreach (var s in sampler.Take(100))
if (s.Value) k += 1;
// assert
// Y - X is Gaussian(1, sqrt(5)), and has a 32.74% chance of being < 0
// (i.e. 32.74% chance that X > Y)
// The normal approximation to the binomial distribution says that the
// 99.9997% confidence interval with n=100, p=0.3274 is +/- 0.1883.
// So the confidence interval is roughly [0.13, 0.52].
Assert.IsTrue(k >= 13 && k < 52); // flaky at N = 100!
}