当前位置: 首页>>代码示例>>C#>>正文


C# Gaussian.GetMeanAndVarianceImproper方法代码示例

本文整理汇总了C#中Gaussian.GetMeanAndVarianceImproper方法的典型用法代码示例。如果您正苦于以下问题:C# Gaussian.GetMeanAndVarianceImproper方法的具体用法?C# Gaussian.GetMeanAndVarianceImproper怎么用?C# Gaussian.GetMeanAndVarianceImproper使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Gaussian的用法示例。


在下文中一共展示了Gaussian.GetMeanAndVarianceImproper方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: SampleAverageConditional

		/// <summary>
		/// EP message to 'sample'
		/// </summary>
		/// <param name="sample">Incoming message from 'sample'.</param>
		/// <param name="mean">Incoming message from 'mean'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
		/// <param name="precision">Incoming message from 'precision'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
		/// <returns>The outgoing EP message to the 'sample' argument</returns>
		/// <remarks><para>
		/// The outgoing message is a distribution matching the moments of 'sample' as the random arguments are varied.
		/// The formula is <c>proj[p(sample) sum_(mean,precision) p(mean,precision) factor(sample,mean,precision)]/p(sample)</c>.
		/// </para></remarks>
		/// <exception cref="ImproperMessageException"><paramref name="mean"/> is not a proper distribution</exception>
		/// <exception cref="ImproperMessageException"><paramref name="precision"/> is not a proper distribution</exception>
		public static Gaussian SampleAverageConditional(Gaussian sample, [SkipIfUniform] Gaussian mean, [SkipIfUniform] Gamma precision)
		{
			Gaussian result = new Gaussian();
			if (precision.IsPointMass) {
				return SampleAverageConditional(mean, precision.Point);
			} else if (sample.IsUniform()) {
				// for large vx, Z =approx N(mx; mm, vx+vm+E[1/prec])
				double mm,mv;
				mean.GetMeanAndVariance(out mm, out mv);
				// NOTE: this error may happen because sample didn't receive any message yet under the schedule.
				// Need to make the scheduler smarter to avoid this.
				if(precision.Shape <= 1.0) throw new ArgumentException("The posterior has infinite variance due to precision distributed as "+precision+" (shape <= 1).  Try using a different prior for the precision, with shape > 1.");
				return Gaussian.FromMeanAndVariance(mm, mv + precision.GetMeanInverse());
			} else if (mean.IsUniform() || precision.IsUniform()) {
				result.SetToUniform();
			} else if (sample.IsPointMass) {
				// The correct answer here is not uniform, but rather a limit.  
				// However it doesn't really matter what we return since multiplication by a point mass 
				// always yields a point mass.
				result.SetToUniform();
			} else if (!precision.IsProper()) {
				throw new ImproperMessageException(precision);
			} else {
				// The formula is int_prec int_mean N(x;mean,1/prec) p(x) p(mean) p(prec) =
				// int_prec N(x; mm, mv + 1/prec) p(x) p(prec) =
				// int_prec N(x; new xm, new xv) N(xm; mm, mv + xv + 1/prec) p(prec)
				// Let R = Prec/(Prec + mean.Prec)
				// new xv = inv(R*mean.Prec + sample.Prec)
				// new xm = xv*(R*mean.PM + sample.PM)

				// In the case where sample and mean are improper distributions, 
				// we must only consider values of prec for which (new xv > 0).
				// This happens when R*mean.Prec > -sample.Prec
				// As a function of Prec, R*mean.Prec has a singularity at Prec=-mean.Prec
				// This function is greater than a threshold when Prec is sufficiently small or sufficiently large.
				// Therefore we construct an interval of Precs to exclude from the integration.
				double xm, xv, mm, mv;
				sample.GetMeanAndVarianceImproper(out xm, out xv);
				mean.GetMeanAndVarianceImproper(out mm, out mv);
				double lowerBound = 0;
				double upperBound = Double.PositiveInfinity;
				bool precisionIsBetween = true;
				if (mean.Precision >= 0) {
					if (sample.Precision < -mean.Precision) throw new ImproperMessageException(sample);
					//lowerBound = -mean.Precision * sample.Precision / (mean.Precision + sample.Precision);
					lowerBound = -1.0 / (xv + mv);
				} else {  // mean.Precision < 0
					if (sample.Precision < 0) {
						precisionIsBetween = true;
						lowerBound = -1.0 / (xv + mv);
						upperBound = -mean.Precision;
					} else if (sample.Precision < -mean.Precision) {
						precisionIsBetween = true;
						lowerBound = 0;
						upperBound = -mean.Precision;
					} else {
						// in this case, the precision should NOT be in this interval.
						precisionIsBetween = false;
						lowerBound = -mean.Precision;
						lowerBound = -1.0 / (xv + mv);
					}
				}
				double[] nodes = new double[QuadratureNodeCount];
				double[] weights = new double[nodes.Length];
				QuadratureNodesAndWeights(precision, nodes, weights);
				double Z = 0, rmean = 0, rvariance = 0;
				for (int i = 0; i < nodes.Length; i++) {
					double newVar, newMean;
					Assert.IsTrue(nodes[i] > 0);
					if ((nodes[i] > lowerBound && nodes[i] < upperBound) != precisionIsBetween) continue;
					// the following works even if sample is uniform. (sample.Precision == 0)
					if (mean.IsPointMass) {
						// take limit mean.Precision -> Inf
						newVar = 1.0 / (nodes[i] + sample.Precision);
						newMean = newVar * (nodes[i] * mean.Point + sample.MeanTimesPrecision);
					} else {
						// mean.Precision < Inf
						double R = nodes[i] / (nodes[i] + mean.Precision);
						newVar = 1.0 / (R * mean.Precision + sample.Precision);
						newMean = newVar * (R * mean.MeanTimesPrecision + sample.MeanTimesPrecision);
					}

					double f;
					// If p(x) is uniform, xv=Inf and the term N(xm; mm, mv + xv + 1/prec) goes away
					if (sample.IsUniform())
						f = weights[i];
					else
//.........这里部分代码省略.........
开发者ID:xornand,项目名称:Infer.Net,代码行数:101,代码来源:GaussianOp.cs

示例2: SampleAverageConditional

		/// <summary>
		/// EP message to 'sample'
		/// </summary>
		/// <param name="sample">Incoming message from 'sample'.</param>
		/// <param name="mean">Incoming message from 'mean'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
		/// <param name="precision">Incoming message from 'precision'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
		/// <returns>The outgoing EP message to the 'sample' argument</returns>
		/// <remarks><para>
		/// The outgoing message is a distribution matching the moments of 'sample' as the random arguments are varied.
		/// The formula is <c>proj[p(sample) sum_(mean,precision) p(mean,precision) factor(sample,mean,precision)]/p(sample)</c>.
		/// </para></remarks>
		/// <exception cref="ImproperMessageException"><paramref name="mean"/> is not a proper distribution</exception>
		/// <exception cref="ImproperMessageException"><paramref name="precision"/> is not a proper distribution</exception>
		public static Gaussian SampleAverageConditional(Gaussian sample, [SkipIfUniform] Gaussian mean, [SkipIfUniform] Gamma precision, Gamma to_precision)
		{
			if (sample.IsUniform() && precision.Shape <= 1.0) sample = Gaussian.FromNatural(1e-20, 1e-20);
			if (precision.IsPointMass) {
				return SampleAverageConditional(mean, precision.Point);
			} else if (sample.IsUniform()) {
				// for large vx, Z =approx N(mx; mm, vx+vm+E[1/prec])
				double mm,mv;
				mean.GetMeanAndVariance(out mm, out mv);
				// NOTE: this error may happen because sample didn't receive any message yet under the schedule.
				// Need to make the scheduler smarter to avoid this.
				if (precision.Shape <= 1.0) throw new ArgumentException("The posterior has infinite variance due to precision distributed as "+precision+" (shape <= 1).  Try using a different prior for the precision, with shape > 1.");
				return Gaussian.FromMeanAndVariance(mm, mv + precision.GetMeanInverse());
			} else if (mean.IsUniform() || precision.IsUniform()) {
				return Gaussian.Uniform();
			} else if (sample.IsPointMass) {
				// The correct answer here is not uniform, but rather a limit.  
				// However it doesn't really matter what we return since multiplication by a point mass 
				// always yields a point mass.
				return Gaussian.Uniform();
			} else if (!precision.IsProper()) {
				throw new ImproperMessageException(precision);
			} else {
				// The formula is int_prec int_mean N(x;mean,1/prec) p(x) p(mean) p(prec) =
				// int_prec N(x; mm, mv + 1/prec) p(x) p(prec) =
				// int_prec N(x; new xm, new xv) N(xm; mm, mv + xv + 1/prec) p(prec)
				// Let R = Prec/(Prec + mean.Prec)
				// new xv = inv(R*mean.Prec + sample.Prec)
				// new xm = xv*(R*mean.PM + sample.PM)

				// In the case where sample and mean are improper distributions, 
				// we must only consider values of prec for which (new xv > 0).
				// This happens when R*mean.Prec > -sample.Prec
				// As a function of Prec, R*mean.Prec has a singularity at Prec=-mean.Prec
				// This function is greater than a threshold when Prec is sufficiently small or sufficiently large.
				// Therefore we construct an interval of Precs to exclude from the integration.
				double xm, xv, mm, mv;
				sample.GetMeanAndVarianceImproper(out xm, out xv);
				mean.GetMeanAndVarianceImproper(out mm, out mv);
				double lowerBound = 0;
				double upperBound = Double.PositiveInfinity;
				bool precisionIsBetween = true;
				if (mean.Precision >= 0) {
					if (sample.Precision < -mean.Precision) throw new ImproperMessageException(sample);
					//lowerBound = -mean.Precision * sample.Precision / (mean.Precision + sample.Precision);
					lowerBound = -1.0 / (xv + mv);
				} else {  // mean.Precision < 0
					if (sample.Precision < 0) {
						precisionIsBetween = true;
						lowerBound = -1.0 / (xv + mv);
						upperBound = -mean.Precision;
					} else if (sample.Precision < -mean.Precision) {
						precisionIsBetween = true;
						lowerBound = 0;
						upperBound = -mean.Precision;
					} else {
						// in this case, the precision should NOT be in this interval.
						precisionIsBetween = false;
						lowerBound = -mean.Precision;
						lowerBound = -1.0 / (xv + mv);
					}
				}
				double[] nodes = new double[QuadratureNodeCount];
				double[] logWeights = new double[nodes.Length];
				Gamma precMarginal = precision*to_precision;
				QuadratureNodesAndWeights(precMarginal, nodes, logWeights);
				if (!to_precision.IsUniform()) {
					// modify the weights
					for (int i = 0; i < logWeights.Length; i++) {
						logWeights[i] += precision.GetLogProb(nodes[i]) - precMarginal.GetLogProb(nodes[i]);
					}
				}
				GaussianEstimator est = new GaussianEstimator();
				double shift = 0;
				for (int i = 0; i < nodes.Length; i++) {
					double newVar, newMean;
					Assert.IsTrue(nodes[i] > 0);
					if ((nodes[i] > lowerBound && nodes[i] < upperBound) != precisionIsBetween) continue;
					// the following works even if sample is uniform. (sample.Precision == 0)
					if (mean.IsPointMass) {
						// take limit mean.Precision -> Inf
						newVar = 1.0 / (nodes[i] + sample.Precision);
						newMean = newVar * (nodes[i] * mean.Point + sample.MeanTimesPrecision);
					} else {
						// mean.Precision < Inf
						double R = nodes[i] / (nodes[i] + mean.Precision);
						newVar = 1.0 / (R * mean.Precision + sample.Precision);
//.........这里部分代码省略.........
开发者ID:prgoodwin,项目名称:HabilisX,代码行数:101,代码来源:GaussianOp.cs


注:本文中的Gaussian.GetMeanAndVarianceImproper方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。