本文整理汇总了C#中Gamma.SetToUniform方法的典型用法代码示例。如果您正苦于以下问题:C# Gamma.SetToUniform方法的具体用法?C# Gamma.SetToUniform怎么用?C# Gamma.SetToUniform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Gamma
的用法示例。
在下文中一共展示了Gamma.SetToUniform方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: AAverageConditional
/// <summary>
/// EP message to 'a'
/// </summary>
/// <param name="Product">Constant value for 'product'.</param>
/// <param name="B">Constant value for 'b'.</param>
/// <returns>The outgoing EP message to the 'a' argument</returns>
/// <remarks><para>
/// The outgoing message is the factor viewed as a function of 'a' conditioned on the given values.
/// </para></remarks>
public static Gamma AAverageConditional(double Product, double B)
{
Gamma result = new Gamma();
if (B == 0) {
if (Product != 0) throw new AllZeroException();
result.SetToUniform();
} else if((Product > 0) != (B > 0)) throw new AllZeroException("Product and argument do not have the same sign");
else result.Point = Product / B;
return result;
}
示例2: PrecisionAverageConditional
/// <summary>
/// EP message to 'precision'
/// </summary>
/// <param name="sample">Incoming message from 'sample'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="mean">Incoming message from 'mean'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="precision">Incoming message from 'precision'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <returns>The outgoing EP message to the 'precision' argument</returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'precision' as the random arguments are varied.
/// The formula is <c>proj[p(precision) sum_(sample,mean) p(sample,mean) factor(sample,mean,precision)]/p(precision)</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="sample"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="mean"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="precision"/> is not a proper distribution</exception>
public static Gamma PrecisionAverageConditional([SkipIfUniform] Gaussian sample, [SkipIfUniform] Gaussian mean, [SkipIfUniform] Gamma precision)
{
if (sample.IsPointMass && mean.IsPointMass)
return PrecisionAverageConditional(sample.Point, mean.Point);
Gamma result = new Gamma();
if (precision.IsPointMass) {
// The correct answer here is not uniform, but rather a limit.
// However it doesn't really matter what we return since multiplication by a point mass
// always yields a point mass.
result.SetToUniform();
} else if (sample.IsUniform() || mean.IsUniform()) {
result.SetToUniform();
} else if (!precision.IsProper()) {
// improper prior
throw new ImproperMessageException(precision);
} else {
// use quadrature to integrate over the precision
// see LogAverageFactor
double xm, xv, mm, mv;
sample.GetMeanAndVarianceImproper(out xm, out xv);
mean.GetMeanAndVarianceImproper(out mm, out mv);
double upperBound = Double.PositiveInfinity;
if (xv + mv < 0) upperBound = -1.0 / (xv + mv);
double[] nodes = new double[QuadratureNodeCount];
double[] weights = new double[nodes.Length];
QuadratureNodesAndWeights(precision, nodes, weights);
double Z = 0, rmean = 0, rvariance = 0;
double shift = 0;
for (int i = 0; i < nodes.Length; i++) {
double v = 1.0 / nodes[i] + xv + mv;
if (v < 0) continue;
double lp = Gaussian.GetLogProb(xm, mm, v);
if (shift == 0) shift = lp;
double f = weights[i] * Math.Exp(lp - shift);
double fm = f * nodes[i];
double fmm = fm * nodes[i];
Z += f;
rmean += fm;
rvariance += fmm;
}
// Adaptive Clenshaw-Curtis quadrature: gives same results on easy integrals but
// still fails ExpFactorTest2
//Converter<double,double> func = delegate(double y) {
// double x = Math.Exp(y);
// double v = 1.0 / x + xv + mv;
// if (v < 0) return 0.0;
// return Math.Exp(Gaussian.GetLogProb(xm, mm, v) + Gamma.GetLogProb(x, precision.Shape+1, precision.Rate));
//};
//double Z2 = BernoulliFromLogOddsOp.AdaptiveClenshawCurtisQuadrature(func, 1, 16, 1e-10);
//Converter<double, double> func2 = delegate(double y)
//{
// return Math.Exp(y) * func(y);
//};
//double rmean2 = BernoulliFromLogOddsOp.AdaptiveClenshawCurtisQuadrature(func2, 1, 16, 1e-10);
//Converter<double, double> func3 = delegate(double y)
//{
// return Math.Exp(2*y) * func(y);
//};
//double rvariance2 = BernoulliFromLogOddsOp.AdaptiveClenshawCurtisQuadrature(func3, 1, 16, 1e-10);
//rmean2 = rmean2/ Z2;
//rvariance2 = rvariance2 / Z2 - rmean2 * rmean2;
if (Z == 0.0) {
//throw new Exception("Quadrature failed");
//Console.WriteLine("Warning: Quadrature found zero mass. Results may be inaccurate.");
result.SetToUniform();
return result;
}
double s = 1.0 / Z;
rmean *= s;
rvariance = rvariance * s - rmean * rmean;
if (Double.IsInfinity(rmean)) {
result.SetToUniform();
} else {
result.SetMeanAndVariance(rmean, rvariance);
if (ForceProper) result.SetToRatioProper(result, precision);
else result.SetToRatio(result, precision);
}
}
#if KeepLastMessage
if (LastPrecisionMessage != null) {
if (Stepsize != 1 && Stepsize != 0) {
LastPrecisionMessage.SetToPower(LastPrecisionMessage, 1 - Stepsize);
result.SetToPower(result, Stepsize);
//.........这里部分代码省略.........