本文整理汇总了C#中Gamma.GetLogNormalizer方法的典型用法代码示例。如果您正苦于以下问题:C# Gamma.GetLogNormalizer方法的具体用法?C# Gamma.GetLogNormalizer怎么用?C# Gamma.GetLogNormalizer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Gamma
的用法示例。
在下文中一共展示了Gamma.GetLogNormalizer方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: SampleAverageConditional
public static Gamma SampleAverageConditional(Gamma sample, double shape, [SkipIfUniform] Gamma rate, [Fresh] Gamma q)
{
if (sample.IsPointMass) return Gamma.Uniform();
if (rate.IsPointMass) return GammaFromShapeAndRateOp.SampleAverageConditional(shape, rate.Point);
if (q.IsPointMass) throw new Exception();
double shape2 = GetShape2(sample, shape); // sample.Shape+shape-1
double sampleMean, sampleVariance;
if (sample.Rate == 0) sample = Gamma.FromShapeAndRate(sample.Shape, 1e-10);
if (sample.Rate == 0) {
// result.Shape > 1 iff sampleMean^2 > sampleVariance iff shape*(rate.Shape-2) > shape+rate.Shape-1
// e.g. shape=4, rate.Shape=4
sampleMean = shape2*rate.GetMeanInverse();
sampleVariance = shape2*(1+shape2)*rate.GetMeanPower(-2) - sampleMean*sampleMean;
} else if(true) {
// Laplace for sample
Gamma temp = Gamma.FromShapeAndRate(rate.Shape+2, rate.Rate);
Gamma qy = Q_slow(temp, shape-1, sample);
double x = qy.GetMean();
double[] g = new double[] { x, 1, 0, 0 };
GaussianOp_Laplace.LaplaceMoments(qy, g, dlogfs(x, shape-1, temp), out sampleMean, out sampleVariance);
} else {
// Laplace for rate
// tends to be less accurate than above
double x = q.GetMean();
double x2 = x*x;
double p = 1/(x + sample.Rate);
double p2 = p*p;
if (sample.Rate < x) {
// another approach might be to write 1/(sample.Rate + r) = 1/r - sample.Rate/r/(sample.Rate + r)
//double a1 = q.Shape - x2*p2;
//double b1 = q.Rate + sample.Rate*p2;
double logz = LogAverageFactor_slow(sample, shape, rate) + sample.GetLogNormalizer();
Gamma sample1 = Gamma.FromShapeAndRate(sample.Shape+1, sample.Rate);
double logz1 = LogAverageFactor_slow(sample1, shape, rate) + sample1.GetLogNormalizer();
double pMean = Math.Exp(logz1 - logz);
sampleMean = shape2*pMean;
Gamma sample2 = Gamma.FromShapeAndRate(sample.Shape+2, sample.Rate);
double logz2 = LogAverageFactor_slow(sample2, shape, rate) + sample2.GetLogNormalizer();
double pMean2 = Math.Exp(logz2 - logz);
double pVariance = pMean2 - pMean*pMean;
sampleVariance = shape2*shape2*pVariance + shape2*(pVariance + pMean*pMean);
} else {
// sampleMean = E[ shape2/(sample.Rate + r) ]
// sampleVariance = var(shape2/(sample.Rate + r)) + E[ shape2/(sample.Rate+r)^2 ]
// = shape2^2*var(1/(sample.Rate + r)) + shape2*(var(1/(sample.Rate+r)) + (sampleMean/shape2)^2)
// Note: this is not a good approximation if sample.Rate is small
double[] g = new double[] { p, -p2, 2*p2*p, -6*p2*p2 };
double pMean, pVariance;
GaussianOp_Laplace.LaplaceMoments(q, g, dlogfs(x, shape, sample), out pMean, out pVariance);
sampleMean = shape2*pMean;
sampleVariance = shape2*shape2*pVariance + shape2*(pVariance + pMean*pMean);
}
}
Gamma sampleMarginal = Gamma.FromMeanAndVariance(sampleMean, sampleVariance);
Gamma result = new Gamma();
result.SetToRatio(sampleMarginal, sample, true);
if (double.IsNaN(result.Shape) || double.IsNaN(result.Rate)) throw new Exception("result is nan");
return result;
}
示例2: ExpAverageConditional
public static Gamma ExpAverageConditional(Gamma exp, Gaussian d, double x)
{
if (d.IsPointMass) return Gamma.PointMass(Math.Exp(d.Point));
if (exp.IsPointMass) return Gamma.Uniform();
double a = exp.Shape;
double b = exp.Rate;
double expx = Math.Exp(x);
double ddlogf = -b*expx;
double v = 1/(d.Precision - ddlogf);
double logz = LogAverageFactor(exp, d, x) + exp.GetLogNormalizer();
Gamma exp1 = Gamma.FromShapeAndRate(a+1,b);
double x1 = x;
for (int iter = 0; iter < 100; iter++) {
double oldx1 = x1;
x1 = X(exp1, d, x1);
if (Math.Abs(x1 - oldx1) < 1e-10) break;
}
double logz1 = LogAverageFactor(exp1, d, x1) + exp1.GetLogNormalizer();
Gamma exp2 = Gamma.FromShapeAndRate(a+2, b);
double x2 = x;
for (int iter = 0; iter < 100; iter++) {
double oldx2 = x2;
x2 = X(exp2, d, x2);
if (Math.Abs(x2 - oldx2) < 1e-10) break;
}
double logz2 = LogAverageFactor(exp2, d, x2) + exp2.GetLogNormalizer();
double mpost = Math.Exp(logz1 - logz);
double m2post = Math.Exp(logz2 - logz);
double vpost = m2post - mpost*mpost;
double dddlogf = ddlogf;
if (false) {
// this is better for large b, worse for small b
double mpost2 = expx + 0.5*v*expx + 0.5*v*v*expx*dddlogf;
Console.WriteLine(mpost2);
}
if (false) {
// this is identical to above
double dlogf = (a-1) + ddlogf;
double dlogz = dlogf + 0.5*v*v*dddlogf*d.Precision;
double mpost2 = ((a-1)-dlogz)/b; // expx+0.5*v*v*prec*expx
Console.WriteLine(mpost2);
}
Gamma result = Gamma.FromMeanAndVariance(mpost, vpost);
result.SetToRatio(result, exp, true);
return result;
}
示例3: LogAverageFactor
public static double LogAverageFactor(Gamma sample, double shape, Gamma rate, [Fresh] Gamma q)
{
double x = q.GetMean();
double shape2 = GetShape2(sample, shape);
double logf = shape*Math.Log(x) - shape2*Math.Log(x + sample.Rate) +
MMath.GammaLn(shape2) - MMath.GammaLn(shape) - sample.GetLogNormalizer();
double logz = logf + rate.GetLogProb(x) - q.GetLogProb(x);
return logz;
}
示例4: LogAverageFactor
/// <summary>
/// Evidence message for EP
/// </summary>
/// <param name="exp">Incoming message from 'exp'.</param>
/// <param name="d">Incoming message from 'd'.</param>
/// <param name="to_d">Previous outgoing message to 'd'.</param>
/// <returns>Logarithm of the factor's average value across the given argument distributions</returns>
/// <remarks><para>
/// The formula for the result is <c>log(sum_(exp,d) p(exp,d) factor(exp,d))</c>.
/// </para></remarks>
public static double LogAverageFactor(Gamma exp, Gaussian d, Gaussian to_d)
{
if (d.IsPointMass) return LogAverageFactor(exp, d.Point);
if (d.IsUniform()) return exp.GetLogAverageOf(new Gamma(0, 0));
if (exp.IsPointMass) return LogAverageFactor(exp.Point, d);
if (exp.IsUniform()) return 0.0;
double[] nodes = new double[QuadratureNodeCount];
double[] weights = new double[QuadratureNodeCount];
double mD, vD;
Gaussian dMarginal = d * to_d;
dMarginal.GetMeanAndVariance(out mD, out vD);
Quadrature.GaussianNodesAndWeights(mD, vD, nodes, weights);
if (!to_d.IsUniform()) {
// modify the weights to include q(y_k)/N(y_k;m,v)
for (int i = 0; i < weights.Length; i++) {
weights[i] *= Math.Exp(d.GetLogProb(nodes[i]) - Gaussian.GetLogProb(nodes[i], mD, vD));
}
}
double Z = 0;
for (int i = 0; i < weights.Length; i++) {
double y = nodes[i];
double f = weights[i] * Math.Exp((exp.Shape - 1) * y - exp.Rate * Math.Exp(y));
Z += f;
}
return Math.Log(Z) - exp.GetLogNormalizer();
}