本文整理汇总了C#中Gamma.GetLogProb方法的典型用法代码示例。如果您正苦于以下问题:C# Gamma.GetLogProb方法的具体用法?C# Gamma.GetLogProb怎么用?C# Gamma.GetLogProb使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Gamma
的用法示例。
在下文中一共展示了Gamma.GetLogProb方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: ARSTest
private static void ARSTest(int sampleCount = 100000)
{
List<double> acceptedSamples = new List<double>();
double shape = 2;
double scale = 2;
Gamma gaussian = new Gamma(shape, scale);
DiscreteEnvelope envelope = new DiscreteEnvelope(0, 1000, gaussian, new double[] { 1, 5 });
int rejectedCount = 0;
while (acceptedSamples.Count < sampleCount)
{
var sampleRegion = envelope.SampleDiscrete();
double sample = envelope.SampleContinuous(sampleRegion);
double ratio = Math.Exp(gaussian.GetLogProb(sample) - envelope.GetLogProb(sampleRegion, sample));
double u = Utils.SRandom.GetUniform();
if (u < ratio)
{
Console.WriteLine("Sample accepted {0}/{1} : {2}", acceptedSamples.Count + 1, sampleCount, sample);
acceptedSamples.Add(sample);
}
else
{
Console.WriteLine("Rejected, adding cut at {0}", sample);
rejectedCount++;
envelope.AddCutPoint(sample);
}
}
double mean = acceptedSamples.Sum() / acceptedSamples.Count;
double variance = acceptedSamples.Select(s => (s - mean) * (s - mean)).Sum() / (sampleCount - 1);
Console.WriteLine("Total Rejected = {0}", rejectedCount);
Console.WriteLine("Sample Mean = {0}, Sample Variance = {1}", mean, variance);
Console.WriteLine("True Mean = {0}, True Variance = {1}", shape * scale, shape * scale * scale);
}
示例2: LogAverageFactor
//-- EP -------------------------------------------------------------------------------------------
/// <summary>
/// Evidence message for EP
/// </summary>
/// <param name="log">Constant value for 'log'.</param>
/// <param name="d">Incoming message from 'd'.</param>
/// <returns>Logarithm of the factor's average value across the given argument distributions</returns>
/// <remarks><para>
/// The formula for the result is <c>log(sum_(d) p(d) factor(log,d))</c>.
/// </para></remarks>
public static double LogAverageFactor(double log, Gamma d)
{
return d.GetLogProb(Math.Exp(log));
}
示例3: CalculateDerivativesTrapezoid
public static Vector CalculateDerivativesTrapezoid(Gamma q)
{
Vector gradElogGamma = Vector.Zero(2);
// Get shape and scale of the distribution
double a = q.Shape;
double b = q.Rate;
double mean, variance;
q.GetMeanAndVariance(out mean, out variance);
double upperBound = 10;
int n = 10000;
double ELogGamma = 0, ELogXLogGamma = 0, ExDigamma = 0;
double inc = upperBound/n;
for (int i = 0; i < n; i++) {
double x = inc * (i+1);
double logp = q.GetLogProb(x);
double p = Math.Exp(logp);
double f = p * MMath.GammaLn(x);
ELogGamma += f;
ELogXLogGamma += Math.Log(x)*f;
ExDigamma += x*MMath.Digamma(x)*p;
}
ELogGamma *= inc;
ELogXLogGamma *= inc;
ExDigamma *= inc;
gradElogGamma[0] = ELogXLogGamma + (Math.Log(b) - MMath.Digamma(a))*ELogGamma;
gradElogGamma[1] = -ExDigamma/b;
return gradElogGamma;
}
示例4: LogAverageFactor
public static double LogAverageFactor(Gamma sample, double shape, Gamma rate, [Fresh] Gamma q)
{
double x = q.GetMean();
double shape2 = GetShape2(sample, shape);
double logf = shape*Math.Log(x) - shape2*Math.Log(x + sample.Rate) +
MMath.GammaLn(shape2) - MMath.GammaLn(shape) - sample.GetLogNormalizer();
double logz = logf + rate.GetLogProb(x) - q.GetLogProb(x);
return logz;
}
示例5: LogAverageFactor
/// <summary>
/// Evidence message for EP
/// </summary>
/// <param name="exp">Incoming message from 'exp'.</param>
/// <param name="d">Constant value for 'd'.</param>
/// <returns>Logarithm of the factor's average value across the given argument distributions</returns>
/// <remarks><para>
/// The formula for the result is <c>log(sum_(exp) p(exp) factor(exp,d))</c>.
/// </para></remarks>
public static double LogAverageFactor(Gamma exp, double d)
{
return exp.GetLogProb(Math.Exp(d));
}
示例6: LogAverageFactor
public static double LogAverageFactor([SkipIfUniform] Gaussian sample, [SkipIfUniform] Gaussian mean, Gamma precision, [Fresh] Gamma q)
{
double mx, vx;
sample.GetMeanAndVariance(out mx, out vx);
double mm, vm;
mean.GetMeanAndVariance(out mm, out vm);
double m = mx-mm;
double v = vx+vm;
double m2 = m*m;
double x = q.GetMean();
double logf = -MMath.LnSqrt2PI -0.5*Math.Log(v + 1/x) - 0.5*m2/(v + 1/x);
double logz = logf + precision.GetLogProb(x) - q.GetLogProb(x);
return logz;
}