本文整理汇总了C#中Gamma.IsUniform方法的典型用法代码示例。如果您正苦于以下问题:C# Gamma.IsUniform方法的具体用法?C# Gamma.IsUniform怎么用?C# Gamma.IsUniform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Gamma
的用法示例。
在下文中一共展示了Gamma.IsUniform方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: ExpAverageConditional
/// <summary>
/// EP message to 'exp'
/// </summary>
/// <param name="exp">Incoming message from 'exp'.</param>
/// <param name="d">Incoming message from 'd'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="to_d">Previous outgoing message to 'd'.</param>
/// <returns>The outgoing EP message to the 'exp' argument</returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'exp' as the random arguments are varied.
/// The formula is <c>proj[p(exp) sum_(d) p(d) factor(exp,d)]/p(exp)</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="d"/> is not a proper distribution</exception>
public static Gamma ExpAverageConditional(Gamma exp, [Proper] Gaussian d, Gaussian to_d)
{
if (d.IsPointMass) return Gamma.PointMass(Math.Exp(d.Point));
if (d.IsUniform()) return Gamma.FromShapeAndRate(0, 0);
if (exp.IsPointMass) {
// Z = int_y delta(x - exp(y)) N(y; my, vy) dy
// = int_u delta(x - u) N(log(u); my, vy)/u du
// = N(log(x); my, vy)/x
// logZ = -log(x) -0.5/vy*(log(x)-my)^2
// dlogZ/dx = -1/x -1/vy*(log(x)-my)/x
// d2logZ/dx2 = -dlogZ/dx/x -1/vy/x^2
// log Ga(x;a,b) = (a-1)*log(x) - bx
// dlogGa/dx = (a-1)/x - b
// d2logGa/dx2 = -(a-1)/x^2
// match derivatives and solve for (a,b)
double shape = (1 + d.GetMean() - Math.Log(exp.Point)) * d.Precision;
double rate = d.Precision / exp.Point;
return Gamma.FromShapeAndRate(shape, rate);
}
if (exp.IsUniform()) return ExpAverageLogarithm(d);
if (to_d.IsUniform() && exp.Shape > 1) {
to_d = new Gaussian(MMath.Digamma(exp.Shape - 1) - Math.Log(exp.Rate), MMath.Trigamma(exp.Shape - 1));
}
double mD, vD;
Gaussian dMarginal = d * to_d;
dMarginal.GetMeanAndVariance(out mD, out vD);
double Z = 0;
double sumy = 0;
double sumexpy = 0;
if (vD < 1e-6) {
double m, v;
d.GetMeanAndVariance(out m, out v);
return Gamma.FromLogMeanAndMeanLog(m + v / 2.0, m);
}
//if (vD < 10)
if (true) {
// Use Gauss-Hermite quadrature
double[] nodes = new double[QuadratureNodeCount];
double[] weights = new double[QuadratureNodeCount];
Quadrature.GaussianNodesAndWeights(mD, vD, nodes, weights);
for (int i = 0; i < weights.Length; i++) {
weights[i] = Math.Log(weights[i]);
}
if (!to_d.IsUniform()) {
// modify the weights to include q(y_k)/N(y_k;m,v)
for (int i = 0; i < weights.Length; i++) {
weights[i] += d.GetLogProb(nodes[i]) - dMarginal.GetLogProb(nodes[i]);
}
}
double maxLogF = Double.NegativeInfinity;
// f(x,y) = Ga(exp(y); shape, rate) = exp(y*(shape-1) -rate*exp(y))
// Z E[x] = int_y int_x x Ga(x;a,b) delta(x - exp(y)) N(y;my,vy) dx dy
// = int_y exp(y) Ga(exp(y);a,b) N(y;my,vy) dy
// Z E[log(x)] = int_y y Ga(exp(y);a,b) N(y;my,vy) dy
for (int i = 0; i < weights.Length; i++) {
double y = nodes[i];
double logf = weights[i] + (exp.Shape - 1) * y - exp.Rate * Math.Exp(y);
if (logf > maxLogF) maxLogF = logf;
weights[i] = logf;
}
for (int i = 0; i < weights.Length; i++) {
double y = nodes[i];
double f = Math.Exp(weights[i] - maxLogF);
double f_y = f * y;
double fexpy = f * Math.Exp(y);
Z += f;
sumy += f_y;
sumexpy += fexpy;
}
} else {
Converter<double, double> p = delegate(double y) {
return d.GetLogProb(y) + (exp.Shape - 1) * y - exp.Rate * Math.Exp(y);
};
double sc = Math.Sqrt(vD);
double offset = p(mD);
Z = Quadrature.AdaptiveClenshawCurtis(z => Math.Exp(p(sc * z + mD) - offset), 1, 16, 1e-6);
sumy = Quadrature.AdaptiveClenshawCurtis(z => (sc * z + mD) * Math.Exp(p(sc * z + mD) - offset), 1, 16, 1e-6);
sumexpy = Quadrature.AdaptiveClenshawCurtis(z => Math.Exp(sc * z + mD + p(sc * z + mD) - offset), 1, 16, 1e-6);
}
if (Z == 0) throw new ApplicationException("Z==0");
double s = 1.0 / Z;
if (Double.IsPositiveInfinity(s)) throw new ApplicationException("s is -inf");
//.........这里部分代码省略.........
示例2: Q
// Perform one update of Q
public static Gamma Q(Gamma sample, double shape, Gamma rate, Gamma q)
{
if (sample.IsUniform() || rate.IsPointMass) return rate;
double a = q.Shape;
double b = q.Rate;
if (b==0) {
a = rate.Shape;
b = rate.Rate;
if (shape > 0) {
// this guess comes from solving dlogf=0 for x
double guess = shape*sample.GetMeanInverse();
b = Math.Max(rate.Rate, a/guess);
}
}
double x = a/b;
double x2 = x*x;
double[] dlogfss = dlogfs(x, shape, sample);
double dlogf = dlogfss[0];
double ddlogf = dlogfss[1];
b = rate.Rate - (dlogf + x*ddlogf);
a = rate.Shape - x2*ddlogf;
if (a <= 0) a = b*rate.Shape/(rate.Rate - dlogf);
if (a <= 0 || b <= 0) throw new Exception();
if (double.IsNaN(a) || double.IsNaN(b)) throw new Exception("result is nan");
return Gamma.FromShapeAndRate(a, b);
}
示例3: LogAverageFactor
/// <summary>
/// Evidence message for EP
/// </summary>
/// <param name="exp">Incoming message from 'exp'.</param>
/// <param name="d">Incoming message from 'd'.</param>
/// <param name="to_d">Previous outgoing message to 'd'.</param>
/// <returns>Logarithm of the factor's average value across the given argument distributions</returns>
/// <remarks><para>
/// The formula for the result is <c>log(sum_(exp,d) p(exp,d) factor(exp,d))</c>.
/// </para></remarks>
public static double LogAverageFactor(Gamma exp, Gaussian d, Gaussian to_d)
{
if (d.IsPointMass) return LogAverageFactor(exp, d.Point);
if (d.IsUniform()) return exp.GetLogAverageOf(new Gamma(0, 0));
if (exp.IsPointMass) return LogAverageFactor(exp.Point, d);
if (exp.IsUniform()) return 0.0;
double[] nodes = new double[QuadratureNodeCount];
double[] weights = new double[QuadratureNodeCount];
double mD, vD;
Gaussian dMarginal = d * to_d;
dMarginal.GetMeanAndVariance(out mD, out vD);
Quadrature.GaussianNodesAndWeights(mD, vD, nodes, weights);
if (!to_d.IsUniform()) {
// modify the weights to include q(y_k)/N(y_k;m,v)
for (int i = 0; i < weights.Length; i++) {
weights[i] *= Math.Exp(d.GetLogProb(nodes[i]) - Gaussian.GetLogProb(nodes[i], mD, vD));
}
}
double Z = 0;
for (int i = 0; i < weights.Length; i++) {
double y = nodes[i];
double f = weights[i] * Math.Exp((exp.Shape - 1) * y - exp.Rate * Math.Exp(y));
Z += f;
}
return Math.Log(Z) - exp.GetLogNormalizer();
}
示例4: LogAverageFactor
/// <summary>
/// Evidence message for EP
/// </summary>
/// <param name="sample">Incoming message from 'sample'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="mean">Incoming message from 'mean'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="precision">Incoming message from 'precision'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <returns>Logarithm of the factor's average value across the given argument distributions</returns>
/// <remarks><para>
/// The formula for the result is <c>log(sum_(sample,mean,precision) p(sample,mean,precision) factor(sample,mean,precision))</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="sample"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="mean"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="precision"/> is not a proper distribution</exception>
public static double LogAverageFactor([SkipIfUniform] Gaussian sample, [SkipIfUniform] Gaussian mean, [SkipIfUniform] Gamma precision, Gamma to_precision)
{
if (precision.IsPointMass) return LogAverageFactor(sample, mean, precision.Point);
if (precision.IsUniform()) return Double.PositiveInfinity;
if (sample.IsPointMass && mean.IsPointMass) return LogAverageFactor(sample.Point, mean.Point, precision);
if (sample.IsUniform() || mean.IsUniform()) return 0.0;
// this code works even if sample and mean are point masses, but not if any variable is uniform.
double xm, xv, mm, mv;
sample.GetMeanAndVariance(out xm, out xv);
mean.GetMeanAndVariance(out mm, out mv);
// use quadrature to integrate over the precision
double[] nodes = new double[QuadratureNodeCount];
double[] logWeights = new double[nodes.Length];
Gamma precMarginal = precision*to_precision;
QuadratureNodesAndWeights(precMarginal, nodes, logWeights);
for (int i = 0; i < nodes.Length; i++) {
logWeights[i] = logWeights[i] + Gaussian.GetLogProb(xm, mm, xv + mv + 1.0 / nodes[i]);
}
if (!to_precision.IsUniform()) {
// modify the weights
for (int i = 0; i < logWeights.Length; i++) {
logWeights[i] += precision.GetLogProb(nodes[i]) - precMarginal.GetLogProb(nodes[i]);
}
}
return MMath.LogSumExp(logWeights);
}
示例5: PrecisionAverageConditional
/// <summary>
/// EP message to 'precision'
/// </summary>
/// <param name="sample">Incoming message from 'sample'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="mean">Incoming message from 'mean'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="precision">Incoming message from 'precision'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <returns>The outgoing EP message to the 'precision' argument</returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'precision' as the random arguments are varied.
/// The formula is <c>proj[p(precision) sum_(sample,mean) p(sample,mean) factor(sample,mean,precision)]/p(precision)</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="sample"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="mean"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="precision"/> is not a proper distribution</exception>
public static Gamma PrecisionAverageConditional([SkipIfUniform] Gaussian sample, [SkipIfUniform] Gaussian mean, [SkipIfUniform] Gamma precision, Gamma to_precision)
{
if (sample.IsPointMass && mean.IsPointMass)
return PrecisionAverageConditional(sample.Point, mean.Point);
Gamma result = new Gamma();
if (precision.IsPointMass) {
// The correct answer here is not uniform, but rather a limit.
// However it doesn't really matter what we return since multiplication by a point mass
// always yields a point mass.
result.SetToUniform();
} else if (sample.IsUniform() || mean.IsUniform()) {
result.SetToUniform();
} else if (!precision.IsProper()) {
// improper prior
throw new ImproperMessageException(precision);
} else {
//to_precision.SetToUniform(); // TEMPORARY
// use quadrature to integrate over the precision
// see LogAverageFactor
double xm, xv, mm, mv;
sample.GetMeanAndVarianceImproper(out xm, out xv);
mean.GetMeanAndVarianceImproper(out mm, out mv);
double upperBound = Double.PositiveInfinity;
if (xv + mv < 0) upperBound = -1.0 / (xv + mv);
double[] nodes = new double[QuadratureNodeCount];
double[] logWeights = new double[nodes.Length];
Gamma precMarginal = precision*to_precision;
QuadratureNodesAndWeights(precMarginal, nodes, logWeights);
if (!to_precision.IsUniform()) {
// modify the weights
for (int i = 0; i < logWeights.Length; i++) {
logWeights[i] += precision.GetLogProb(nodes[i]) - precMarginal.GetLogProb(nodes[i]);
}
}
double shift = 0;
MeanVarianceAccumulator mva = new MeanVarianceAccumulator();
for (int i = 0; i < nodes.Length; i++) {
double v = 1.0 / nodes[i] + xv + mv;
if (v < 0) continue;
double lp = Gaussian.GetLogProb(xm, mm, v);
if (shift == 0) shift = lp;
double f = Math.Exp(logWeights[i] + lp - shift);
mva.Add(nodes[i], f);
}
// Adaptive Clenshaw-Curtis quadrature: gives same results on easy integrals but
// still fails ExpFactorTest2
//Converter<double,double> func = delegate(double y) {
// double x = Math.Exp(y);
// double v = 1.0 / x + xv + mv;
// if (v < 0) return 0.0;
// return Math.Exp(Gaussian.GetLogProb(xm, mm, v) + Gamma.GetLogProb(x, precision.Shape+1, precision.Rate));
//};
//double Z2 = BernoulliFromLogOddsOp.AdaptiveClenshawCurtisQuadrature(func, 1, 16, 1e-10);
//Converter<double, double> func2 = delegate(double y)
//{
// return Math.Exp(y) * func(y);
//};
//double rmean2 = BernoulliFromLogOddsOp.AdaptiveClenshawCurtisQuadrature(func2, 1, 16, 1e-10);
//Converter<double, double> func3 = delegate(double y)
//{
// return Math.Exp(2*y) * func(y);
//};
//double rvariance2 = BernoulliFromLogOddsOp.AdaptiveClenshawCurtisQuadrature(func3, 1, 16, 1e-10);
//rmean2 = rmean2/ Z2;
//rvariance2 = rvariance2 / Z2 - rmean2 * rmean2;
double Z = mva.Count;
if (double.IsNaN(Z)) throw new Exception("Z is nan");
if (Z == 0.0) {
throw new Exception("Quadrature found zero mass");
//Console.WriteLine("Warning: Quadrature found zero mass. Results may be inaccurate.");
result.SetToUniform();
return result;
}
double rmean = mva.Mean;
double rvariance = mva.Variance;
if (rvariance == 0) throw new Exception("Quadrature found zero variance");
if (Double.IsInfinity(rmean)) {
result.SetToUniform();
} else {
result.SetMeanAndVariance(rmean, rvariance);
result.SetToRatio(result, precision, ForceProper);
}
}
//.........这里部分代码省略.........
示例6: SampleAverageConditional
/// <summary>
/// EP message to 'sample'
/// </summary>
/// <param name="sample">Incoming message from 'sample'.</param>
/// <param name="mean">Incoming message from 'mean'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="precision">Incoming message from 'precision'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <returns>The outgoing EP message to the 'sample' argument</returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'sample' as the random arguments are varied.
/// The formula is <c>proj[p(sample) sum_(mean,precision) p(mean,precision) factor(sample,mean,precision)]/p(sample)</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="mean"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="precision"/> is not a proper distribution</exception>
public static Gaussian SampleAverageConditional(Gaussian sample, [SkipIfUniform] Gaussian mean, [SkipIfUniform] Gamma precision, Gamma to_precision)
{
if (sample.IsUniform() && precision.Shape <= 1.0) sample = Gaussian.FromNatural(1e-20, 1e-20);
if (precision.IsPointMass) {
return SampleAverageConditional(mean, precision.Point);
} else if (sample.IsUniform()) {
// for large vx, Z =approx N(mx; mm, vx+vm+E[1/prec])
double mm,mv;
mean.GetMeanAndVariance(out mm, out mv);
// NOTE: this error may happen because sample didn't receive any message yet under the schedule.
// Need to make the scheduler smarter to avoid this.
if (precision.Shape <= 1.0) throw new ArgumentException("The posterior has infinite variance due to precision distributed as "+precision+" (shape <= 1). Try using a different prior for the precision, with shape > 1.");
return Gaussian.FromMeanAndVariance(mm, mv + precision.GetMeanInverse());
} else if (mean.IsUniform() || precision.IsUniform()) {
return Gaussian.Uniform();
} else if (sample.IsPointMass) {
// The correct answer here is not uniform, but rather a limit.
// However it doesn't really matter what we return since multiplication by a point mass
// always yields a point mass.
return Gaussian.Uniform();
} else if (!precision.IsProper()) {
throw new ImproperMessageException(precision);
} else {
// The formula is int_prec int_mean N(x;mean,1/prec) p(x) p(mean) p(prec) =
// int_prec N(x; mm, mv + 1/prec) p(x) p(prec) =
// int_prec N(x; new xm, new xv) N(xm; mm, mv + xv + 1/prec) p(prec)
// Let R = Prec/(Prec + mean.Prec)
// new xv = inv(R*mean.Prec + sample.Prec)
// new xm = xv*(R*mean.PM + sample.PM)
// In the case where sample and mean are improper distributions,
// we must only consider values of prec for which (new xv > 0).
// This happens when R*mean.Prec > -sample.Prec
// As a function of Prec, R*mean.Prec has a singularity at Prec=-mean.Prec
// This function is greater than a threshold when Prec is sufficiently small or sufficiently large.
// Therefore we construct an interval of Precs to exclude from the integration.
double xm, xv, mm, mv;
sample.GetMeanAndVarianceImproper(out xm, out xv);
mean.GetMeanAndVarianceImproper(out mm, out mv);
double lowerBound = 0;
double upperBound = Double.PositiveInfinity;
bool precisionIsBetween = true;
if (mean.Precision >= 0) {
if (sample.Precision < -mean.Precision) throw new ImproperMessageException(sample);
//lowerBound = -mean.Precision * sample.Precision / (mean.Precision + sample.Precision);
lowerBound = -1.0 / (xv + mv);
} else { // mean.Precision < 0
if (sample.Precision < 0) {
precisionIsBetween = true;
lowerBound = -1.0 / (xv + mv);
upperBound = -mean.Precision;
} else if (sample.Precision < -mean.Precision) {
precisionIsBetween = true;
lowerBound = 0;
upperBound = -mean.Precision;
} else {
// in this case, the precision should NOT be in this interval.
precisionIsBetween = false;
lowerBound = -mean.Precision;
lowerBound = -1.0 / (xv + mv);
}
}
double[] nodes = new double[QuadratureNodeCount];
double[] logWeights = new double[nodes.Length];
Gamma precMarginal = precision*to_precision;
QuadratureNodesAndWeights(precMarginal, nodes, logWeights);
if (!to_precision.IsUniform()) {
// modify the weights
for (int i = 0; i < logWeights.Length; i++) {
logWeights[i] += precision.GetLogProb(nodes[i]) - precMarginal.GetLogProb(nodes[i]);
}
}
GaussianEstimator est = new GaussianEstimator();
double shift = 0;
for (int i = 0; i < nodes.Length; i++) {
double newVar, newMean;
Assert.IsTrue(nodes[i] > 0);
if ((nodes[i] > lowerBound && nodes[i] < upperBound) != precisionIsBetween) continue;
// the following works even if sample is uniform. (sample.Precision == 0)
if (mean.IsPointMass) {
// take limit mean.Precision -> Inf
newVar = 1.0 / (nodes[i] + sample.Precision);
newMean = newVar * (nodes[i] * mean.Point + sample.MeanTimesPrecision);
} else {
// mean.Precision < Inf
double R = nodes[i] / (nodes[i] + mean.Precision);
newVar = 1.0 / (R * mean.Precision + sample.Precision);
//.........这里部分代码省略.........
示例7: Q
public static Gamma Q(Gaussian sample, Gaussian mean, Gamma precision, Gamma q)
{
if (precision.IsPointMass || sample.IsUniform() || mean.IsUniform()) return precision;
double mx, vx;
sample.GetMeanAndVariance(out mx, out vx);
double mm, vm;
mean.GetMeanAndVariance(out mm, out vm);
double m = mx-mm;
double v = vx+vm;
if (double.IsInfinity(v)) return precision;
double m2 = m*m;
double[] dlogfss;
double x = q.GetMean();
double a = precision.Shape;
double b = precision.Rate;
if (double.IsPositiveInfinity(x)) x = (a + Math.Sqrt(a*a + 2*b/v))/(2*b);
// TODO: check initialization
if (q.IsUniform()) x = 0;
//x = QReinitialize(sample, mean, precision, x);
for (int iter = 0; iter < 1000; iter++) {
double oldx = x;
if (true) {
// want to find x that optimizes -0.5*log(v + 1/x) - 0.5*m2/(v + 1/x) + a*log(x) - b*x
// we fit a lower bound, then optimize the bound.
// this is guaranteed to improve x.
double logSlope = precision.Shape;
double slope = -precision.Rate;
double denom = v*x+1;
// 1/(v+1/x) <= 1/(v+1/x0) + (x-x0)/(v*x0+1)^2
slope += -0.5*m2/(denom*denom);
if (v*x < 1) {
// log(v+1/x) = log(v*x+1) - log(x)
// log(v*x+1) <= log(v*x0+1) + (x-x0)*v/(v*x0+1)
logSlope += 0.5;
slope += -0.5*v/denom;
x = -logSlope/slope;
// at x=0 the update is x = (a+0.5)/(b + 0.5*(m2+v))
// at x=inf the update is x = (a+0.5)/b
} else {
// if v*x > 1:
// log(v+1/x) <= log(v+1/x0) + (1/x - 1/x0)/(v + 1/x0)
double invSlope = -0.5*x/denom;
// solve for the maximum of logslope*log(r)+slope*r+invslope./r
// logslope/r + slope - invslope/r^2 = 0
// logslope*r + slope*r^2 - invslope = 0
//x = (-logSlope - Math.Sqrt(logSlope*logSlope + 4*invSlope*slope))/(2*slope);
double c = 0.5*logSlope/slope;
double d = invSlope/slope;
// note c < 0 always
x = Math.Sqrt(c*c + d) - c;
// at x=inf, invSlope=-0.5/v so the update is x = (ax + sqrt(ax*ax + 2*b/v))/(2*b)
}
if (x < 0) throw new Exception("x < 0");
} else {
dlogfss = dlogfs(x, m, v);
if (true) {
x = (precision.Shape - x*x*dlogfss[1])/(precision.Rate - dlogfss[0] - x*dlogfss[1]);
} else if (true) {
double delta = dlogfss[0] - precision.Rate;
x *= Math.Exp(-(delta*x + precision.Shape)/(delta*x + dlogfss[1]*x));
} else {
x = precision.Shape/(precision.Rate - dlogfss[0]);
}
if (x < 0) throw new Exception("x < 0");
}
if (double.IsNaN(x)) throw new Exception("x is nan");
//Console.WriteLine("{0}: {1}", iter, x);
if (MMath.AbsDiff(oldx, x, 1e-10) < 1e-10) {
x = QReinitialize(sample, mean, precision, x);
if (MMath.AbsDiff(oldx, x, 1e-10) < 1e-10) break;
}
if (iter == 1000-1) throw new Exception("not converging");
}
//x = r0;
dlogfss = dlogfs(x, m, v);
double dlogf = dlogfss[0];
double ddlogf = dlogfss[1];
a = precision.Shape - x*x*ddlogf;
b = precision.Rate - (dlogf + x*ddlogf);
if (a <= 0 || b <= 0) throw new Exception();
if (double.IsNaN(a) || double.IsNaN(b)) throw new Exception("result is nan");
return Gamma.FromShapeAndRate(a, b);
}