本文整理汇总了C#中CvMat.Transpose方法的典型用法代码示例。如果您正苦于以下问题:C# CvMat.Transpose方法的具体用法?C# CvMat.Transpose怎么用?C# CvMat.Transpose使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类CvMat
的用法示例。
在下文中一共展示了CvMat.Transpose方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: ApplyCalibrationToUnityCamera
private void ApplyCalibrationToUnityCamera(CvMat intrinsic, CvMat rotation, CvMat translation)
{
CvMat rotationInverse = GetRotationMatrixFromRotationVector(rotation).Transpose(); // transpose is same as inverse for rotation matrix
CvMat transFinal = (rotationInverse * -1) * translation.Transpose();
_mainCamera.projectionMatrix = LoadProjectionMatrix((float)intrinsic[0, 0], (float)intrinsic[1, 1], (float)intrinsic[0, 2], (float)intrinsic[1, 2]);
ApplyTranslationAndRotationToCamera(transFinal, RotationConversion.RotationMatrixToEulerZXY(rotationInverse));
}
示例2: Solve
public CvMat Solve()
{
// 重心の計算
CvPoint3D64f fromCenter = new CvPoint3D64f();
CvPoint3D64f toCenter = new CvPoint3D64f();
double weightSum = 0;
foreach (var tuple in _correspondings)
{
fromCenter += tuple.Item1 * tuple.Item3;
toCenter += tuple.Item2 * tuple.Item3;
weightSum += tuple.Item3;
}
if (weightSum != 0)
{
fromCenter *= 1.0 / weightSum;
toCenter *= 1.0 / weightSum;
}
// q: quaternion; 4x1
// fn, tn: from[n], to[n]; 3x1
// Xn: (tn - fn, (tn+fn)×[1,0,0], (tn+fn)×[0,1,0], (tn+fn)×[0,0,1]); 3x4
// M: Σi(Xi^t Wi Xi); 4x4
// Wi: I; 3x3
// J = q^t Mq -> min
// 最小二乗法
using (CvMat M = new CvMat(4, 4, MatrixType.F64C1))
{
M.Zero();
foreach (var tuple in _correspondings)
{
// 重心からの距離
CvPoint3D64f fromVector = tuple.Item1 - fromCenter;
CvPoint3D64f toVector = tuple.Item2 - toCenter;
using (CvMat Xi = new CvMat(3, 4, MatrixType.F64C1))
{
CvPoint3D64f diff = toVector - fromVector;
CvPoint3D64f sum = toVector + fromVector;
CvPoint3D64f second = CvEx.Cross(sum, new CvPoint3D64f(1, 0, 0));
CvPoint3D64f third = CvEx.Cross(sum, new CvPoint3D64f(0, 1, 0));
CvPoint3D64f fourth = CvEx.Cross(sum, new CvPoint3D64f(0, 0, 1));
CvEx.FillCvMat(Xi, new double[] { diff.X, second.X, third.X, fourth.X, diff.Y, second.Y, third.Y, fourth.Y, diff.Z, second.Z, third.Z, fourth.Z });
using (CvMat XiTranspose = Xi.Transpose())
using (CvMat addend = XiTranspose * Xi * tuple.Item3)
{
M.Add(addend, M);
}
}
}
using (CvMat MTemp = CvEx.CloneCvMat(M))
using (CvMat eVals = new CvMat(4, 1, MatrixType.F64C1))
using (CvMat eVects = new CvMat(4, 4, MatrixType.F64C1))
{
//Cv.EigenVV(MTemp, eVects, eVals, 0.000001);
Cv.SVD(MTemp, eVals, eVects, null, SVDFlag.U_T | SVDFlag.ModifyA);
int minEIndex = 3;
/*
if (false)
{
double minE = double.MaxValue;
for (int i = 0; i < 4; i++)
{
double eVal = Math.Abs(eVals[i, 0]);
if (eVal < minE)
{
minE = eVal;
minEIndex = i;
}
}
}
*/
CvMat ret = new CvMat(4, 4, MatrixType.F64C1);
ret.Zero();
ret[3, 3] = 1.0;
CvMat rotateConversion;
/*
if (false)
{
// こっちの変換はほとんど恒等のときに誤差が大きい
CvMat q = eVects.GetRow(minEIndex);
// クォータニオンから回転ベクトルを計算
double theta = Math.Acos(q[0, 0]) * 2;
double sin = Math.Sin(theta / 2);
CvPoint3D64f rot = new CvPoint3D64f(q[0, 1] / sin * theta, q[0, 2] / sin * theta, q[0, 3] / sin * theta);
// 回転ベクトルから回転行列を計算
ret.GetSubRect(out rotateConversion, new CvRect(0, 0, 3, 3));
using (CvMat rotVector = new CvMat(1, 3, MatrixType.F64C1))
{
rotVector[0, 0] = rot.X;
rotVector[0, 1] = rot.Y;
rotVector[0, 2] = rot.Z;
Cv.Rodrigues2(rotVector, rotateConversion);
}
}
else
{*/
CvMat rotationMat = CvEx.QuaternionToMat3D(eVects[minEIndex, 0], eVects[minEIndex, 1], eVects[minEIndex, 2], eVects[minEIndex, 3]);
ret.GetSubRect(out rotateConversion, new CvRect(0, 0, 3, 3));
//.........这里部分代码省略.........