当前位置: 首页>>代码示例>>C#>>正文


C# CvMat.Set方法代码示例

本文整理汇总了C#中CvMat.Set方法的典型用法代码示例。如果您正苦于以下问题:C# CvMat.Set方法的具体用法?C# CvMat.Set怎么用?C# CvMat.Set使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在CvMat的用法示例。


在下文中一共展示了CvMat.Set方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: BuildBoostClassifier

        /// <summary>
        /// 
        /// </summary>
        /// <param name="dataFilename"></param>
        /// <param name="filenameToSave"></param>
        /// <param name="filenameToLoad"></param>
        private void BuildBoostClassifier(string dataFilename, string filenameToSave, string filenameToLoad)
        {
            const int ClassCount = 26;

            CvMat data = null;
            CvMat responses = null;
            CvMat varType = null;
            CvMat tempSample = null;
            CvMat weakResponses = null;

            int nsamplesAall = 0, ntrainSamples = 0;
            int varCount;
            double trainHr = 0, testHr = 0;
            CvBoost boost = new CvBoost();

            try
            {
                ReadNumClassData(dataFilename, 16, out data, out responses);
            }
            catch
            {
                Console.WriteLine("Could not read the database {0}", dataFilename);
                return;
            }
            Console.WriteLine("The database {0} is loaded.", dataFilename);

            nsamplesAall = data.Rows;
            ntrainSamples = (int)(nsamplesAall * 0.5);
            varCount = data.Cols;

            // Create or load Boosted Tree classifier
            if (filenameToLoad != null)
            {
                // load classifier from the specified file
                boost.Load(filenameToLoad);
                ntrainSamples = 0;
                if (boost.GetWeakPredictors() == null)
                {
                    Console.WriteLine("Could not read the classifier {0}", filenameToLoad);
                    return;
                }
                Console.WriteLine("The classifier {0} is loaded.", filenameToLoad);
            }
            else
            {
                // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                //
                // As currently boosted tree classifier in MLL can only be trained
                // for 2-class problems, we transform the training database by
                // "unrolling" each training sample as many times as the number of
                // classes (26) that we have.
                //
                // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                using (CvMat newData = new CvMat(ntrainSamples * ClassCount, varCount + 1, MatrixType.F32C1))
                using (CvMat newResponses = new CvMat(ntrainSamples * ClassCount, 1, MatrixType.S32C1))
                {

                    // 1. unroll the database type mask
                    Console.WriteLine("Unrolling the database...");
                    for (int i = 0; i < ntrainSamples; i++)
                    {
                        unsafe
                        {
                            float* dataRow = (float*)(data.DataByte + data.Step * i);
                            for (int j = 0; j < ClassCount; j++)
                            {
                                float* newDataRow = (float*)(newData.DataByte + newData.Step * (i * ClassCount + j));
                                for (int k = 0; k < varCount; k++)
                                {
                                    newDataRow[k] = dataRow[k];
                                }
                                newDataRow[varCount] = (float)j;
                                newResponses.DataInt32[i * ClassCount + j] = (responses.DataSingle[i] == j + 'A') ? 1 : 0;
                            }
                        }
                    }

                    // 2. create type mask
                    varType = new CvMat(varCount + 2, 1, MatrixType.U8C1);
                    varType.Set(CvScalar.ScalarAll(CvStatModel.CV_VAR_ORDERED));
                    // the last indicator variable, as well
                    // as the new (binary) response are categorical
                    varType.SetReal1D(varCount, CvStatModel.CV_VAR_CATEGORICAL);
                    varType.SetReal1D(varCount + 1, CvStatModel.CV_VAR_CATEGORICAL);

                    // 3. train classifier
                    Console.Write("Training the classifier (may take a few minutes)...");
                    boost.Train(
                        newData, DTreeDataLayout.RowSample, newResponses, null, null, varType, null,
                        new CvBoostParams(CvBoost.REAL, 100, 0.95, 5, false, null)
                    );
                }
                Console.WriteLine();
//.........这里部分代码省略.........
开发者ID:healtech,项目名称:opencvsharp,代码行数:101,代码来源:LetterRecog.cs

示例2: BuildRtreesClassifier

        /// <summary>
        /// RTrees
        /// </summary>
        /// <param name="dataFilename"></param>
        /// <param name="filenameToSave"></param>
        /// <param name="filenameToLoad"></param>
        private void BuildRtreesClassifier(string dataFilename, string filenameToSave, string filenameToLoad)
        {
            CvMat data = null;
            CvMat responses = null;
            CvMat varType = null;
            CvMat sampleIdx = null;


            int nsamplesAll = 0, ntrainSamples = 0;
            double trainHr = 0, testHr = 0;
            CvRTrees forest = new CvRTrees();

            try
            {
                ReadNumClassData(dataFilename, 16, out data, out responses);
            }
            catch
            {
                Console.WriteLine("Could not read the database {0}", dataFilename);
                return;
            }
            Console.WriteLine("The database {0} is loaded.", dataFilename);

            nsamplesAll = data.Rows;
            ntrainSamples = (int)(nsamplesAll * 0.8);

            // Create or load Random Trees classifier
            if (filenameToLoad != null)
            {
                // load classifier from the specified file
                forest.Load(filenameToLoad);
                ntrainSamples = 0;
                if (forest.GetTreeCount() == 0)
                {
                    Console.WriteLine("Could not read the classifier {0}", filenameToLoad);
                    return;
                }
                Console.WriteLine("The classifier {0} is loaded.", filenameToLoad);
            }
            else
            {
                // create classifier by using <data> and <responses>
                Console.Write("Training the classifier ...");

                // 1. create type mask
                varType = new CvMat(data.Cols + 1, 1, MatrixType.U8C1);
                varType.Set(CvScalar.ScalarAll(CvStatModel.CV_VAR_ORDERED));
                varType.SetReal1D(data.Cols, CvStatModel.CV_VAR_CATEGORICAL);

                // 2. create sample_idx
                sampleIdx = new CvMat(1, nsamplesAll, MatrixType.U8C1);
                {
                    CvMat mat;
                    Cv.GetCols(sampleIdx, out mat, 0, ntrainSamples);
                    mat.Set(CvScalar.RealScalar(1));

                    Cv.GetCols(sampleIdx, out mat, ntrainSamples, nsamplesAll);
                    mat.SetZero();
                }

                // 3. train classifier
                forest.Train(
                    data, DTreeDataLayout.RowSample, responses, null, sampleIdx, varType, null,
                    new CvRTParams(10, 10, 0, false, 15, null, true, 4, new CvTermCriteria(100, 0.01f))
                );
                Console.WriteLine();
            }

            // compute prediction error on train and test data
            for (int i = 0; i < nsamplesAll; i++)
            {
                double r;
                CvMat sample;
                Cv.GetRow(data, out sample, i);

                r = forest.Predict(sample);
                r = Math.Abs((double)r - responses.DataArraySingle[i]) <= float.Epsilon ? 1 : 0;

                if (i < ntrainSamples)
                    trainHr += r;
                else
                    testHr += r;
            }

            testHr /= (double)(nsamplesAll - ntrainSamples);
            trainHr /= (double)ntrainSamples;
            Console.WriteLine("Recognition rate: train = {0:F1}%, test = {1:F1}%", trainHr * 100.0, testHr * 100.0);

            Console.WriteLine("Number of trees: {0}", forest.GetTreeCount());

            // Print variable importance
            Mat varImportance0 = forest.GetVarImportance();
            CvMat varImportance = varImportance0.ToCvMat();
            if (varImportance != null)
//.........这里部分代码省略.........
开发者ID:healtech,项目名称:opencvsharp,代码行数:101,代码来源:LetterRecog.cs


注:本文中的CvMat.Set方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。