当前位置: 首页>>代码示例>>C#>>正文


C# CvMat.Dispose方法代码示例

本文整理汇总了C#中CvMat.Dispose方法的典型用法代码示例。如果您正苦于以下问题:C# CvMat.Dispose方法的具体用法?C# CvMat.Dispose怎么用?C# CvMat.Dispose使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在CvMat的用法示例。


在下文中一共展示了CvMat.Dispose方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: MushroomCreateDTree

        /// <summary>
        /// 
        /// </summary>
        /// <param name="data"></param>
        /// <param name="missing"></param>
        /// <param name="responses"></param>
        /// <param name="pWeight"></param>
        /// <returns></returns>
        private CvDTree MushroomCreateDTree(CvMat data, CvMat missing, CvMat responses, float pWeight)
        {
            float[] priors = { 1, pWeight };

            CvMat varType = new CvMat(data.Cols + 1, 1, MatrixType.U8C1);
            Cv.Set(varType, CvScalar.ScalarAll(CvStatModel.CV_VAR_CATEGORICAL)); // all the variables are categorical

            CvDTree dtree = new CvDTree();

            CvDTreeParams p = new CvDTreeParams(8, // max depth
                                            10, // min sample count
                                            0, // regression accuracy: N/A here
                                            true, // compute surrogate split, as we have missing data
                                            15, // max number of categories (use sub-optimal algorithm for larger numbers)
                                            10, // the number of cross-validation folds
                                            true, // use 1SE rule => smaller tree
                                            true, // throw away the pruned tree branches
                                            priors // the array of priors, the bigger p_weight, the more attention
                // to the poisonous mushrooms
                // (a mushroom will be judjed to be poisonous with bigger chance)
            );

            dtree.Train(data, DTreeDataLayout.RowSample, responses, null, null, varType, missing, p);

            // compute hit-rate on the training database, demonstrates predict usage.
            int hr1 = 0, hr2 = 0, pTotal = 0;
            for (int i = 0; i < data.Rows; i++)
            {
                CvMat sample, mask;
                Cv.GetRow(data, out sample, i);
                Cv.GetRow(missing, out mask, i);
                double r = dtree.Predict(sample, mask).Value;
                bool d = Math.Abs(r - responses.DataArraySingle[i]) >= float.Epsilon;
                if (d)
                {
                    if (r != 'p')
                        hr1++;
                    else
                        hr2++;
                }
                //Console.WriteLine(responses.DataArraySingle[i]);
                pTotal += (responses.DataArraySingle[i] == (float)'p') ? 1 : 0;
            }

            Console.WriteLine("Results on the training database");
            Console.WriteLine("\tPoisonous mushrooms mis-predicted: {0} ({1}%)", hr1, (double)hr1 * 100 / pTotal);
            Console.WriteLine("\tFalse-alarms: {0} ({1}%)", hr2, (double)hr2 * 100 / (data.Rows - pTotal));

            varType.Dispose();

            return dtree;
        }
开发者ID:neoxeo,项目名称:opencvsharp,代码行数:60,代码来源:DTree.cs

示例2: BuildMlpClassifier


//.........这里部分代码省略.........

            // Create or load MLP classifier
            if (filenameToLoad != null)
            {
                // load classifier from the specified file
                mlp.Load(filenameToLoad);
                ntrainSamples = 0;
                if (mlp.GetLayerCount() == 0)
                {
                    Console.WriteLine("Could not read the classifier {0}", filenameToLoad);
                    return;
                }
                Console.WriteLine("The classifier {0} is loaded.", filenameToLoad);
            }
            else
            {
                // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                //
                // MLP does not support categorical variables by explicitly.
                // So, instead of the output class label, we will use
                // a binary vector of <class_count> components for training and,
                // therefore, MLP will give us a vector of "probabilities" at the
                // prediction stage
                //
                // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                using (CvMat newResponses = new CvMat(ntrainSamples, ClassCount, MatrixType.F32C1))
                {
                    // 1. unroll the responses
                    Console.WriteLine("Unrolling the responses...");
                    unsafe
                    {
                        for (int i = 0; i < ntrainSamples; i++)
                        {
                            int clsLabel = Cv.Round(responses.DataArraySingle[i]) - 'A';
                            float* bitVec = (float*)(newResponses.DataByte + i * newResponses.Step);
                            for (int j = 0; j < ClassCount; j++)
                            {
                                bitVec[j] = 0.0f;
                            }
                            bitVec[clsLabel] = 1.0f;
                        }
                    }
                    Cv.GetRows(data, out trainData, 0, ntrainSamples);

                    // 2. train classifier
                    int[] layerSizesData = { data.Cols, 100, 100, ClassCount };
                    layerSizes = new CvMat(1, layerSizesData.Length, MatrixType.S32C1, layerSizesData);
                    mlp.Create(layerSizes);
                    Console.Write("Training the classifier (may take a few minutes)...");
                    mlp.Train(
                        trainData, newResponses, null, null,
                        new CvANN_MLP_TrainParams(new CvTermCriteria(300, 0.01), MLPTrainingMethod.RPROP, 0.01)
                    );
                }
                Console.WriteLine();
            }

            mlpResponse = new CvMat(1, ClassCount, MatrixType.F32C1);

            // compute prediction error on train and test data
            for (int i = 0; i < nsamplesAll; i++)
            {
                int bestClass;
                CvMat sample;
                CvPoint minLoc, maxLoc;

                Cv.GetRow(data, out sample, i);                
                mlp.Predict(sample, mlpResponse);
                mlpResponse.MinMaxLoc(out minLoc, out maxLoc, null);
                bestClass = maxLoc.X + 'A';

                int r = (Math.Abs((double)bestClass - responses.DataArraySingle[i]) < float.Epsilon) ? 1 : 0;

                if (i < ntrainSamples)
                    trainHr += r;
                else
                    testHr += r;
            }

            testHr /= (double)(nsamplesAll - ntrainSamples);
            trainHr /= (double)ntrainSamples;
            Console.WriteLine("Recognition rate: train = {0:F1}%, test = {1:F1}%", trainHr * 100.0, testHr * 100.0);

            // Save classifier to file if needed
            if (filenameToSave != null)
            {
                mlp.Save(filenameToSave);
            }


            Console.Read();


            mlpResponse.Dispose();
            data.Dispose();
            responses.Dispose();
            if (layerSizes != null) layerSizes.Dispose();
            mlp.Dispose();
        }
开发者ID:healtech,项目名称:opencvsharp,代码行数:101,代码来源:LetterRecog.cs

示例3: BuildBoostClassifier


//.........这里部分代码省略.........
                using (CvMat newResponses = new CvMat(ntrainSamples * ClassCount, 1, MatrixType.S32C1))
                {

                    // 1. unroll the database type mask
                    Console.WriteLine("Unrolling the database...");
                    for (int i = 0; i < ntrainSamples; i++)
                    {
                        unsafe
                        {
                            float* dataRow = (float*)(data.DataByte + data.Step * i);
                            for (int j = 0; j < ClassCount; j++)
                            {
                                float* newDataRow = (float*)(newData.DataByte + newData.Step * (i * ClassCount + j));
                                for (int k = 0; k < varCount; k++)
                                {
                                    newDataRow[k] = dataRow[k];
                                }
                                newDataRow[varCount] = (float)j;
                                newResponses.DataInt32[i * ClassCount + j] = (responses.DataSingle[i] == j + 'A') ? 1 : 0;
                            }
                        }
                    }

                    // 2. create type mask
                    varType = new CvMat(varCount + 2, 1, MatrixType.U8C1);
                    varType.Set(CvScalar.ScalarAll(CvStatModel.CV_VAR_ORDERED));
                    // the last indicator variable, as well
                    // as the new (binary) response are categorical
                    varType.SetReal1D(varCount, CvStatModel.CV_VAR_CATEGORICAL);
                    varType.SetReal1D(varCount + 1, CvStatModel.CV_VAR_CATEGORICAL);

                    // 3. train classifier
                    Console.Write("Training the classifier (may take a few minutes)...");
                    boost.Train(
                        newData, DTreeDataLayout.RowSample, newResponses, null, null, varType, null,
                        new CvBoostParams(CvBoost.REAL, 100, 0.95, 5, false, null)
                    );
                }
                Console.WriteLine();
            }

            tempSample = new CvMat(1, varCount + 1, MatrixType.F32C1);
            weakResponses = new CvMat(1, boost.GetWeakPredictors().Total, MatrixType.F32C1);

            // compute prediction error on train and test data
            for (int i = 0; i < nsamplesAall; i++)
            {
                int bestClass = 0;
                double maxSum = double.MinValue;
                double r;
                CvMat sample;

                Cv.GetRow(data, out sample, i);
                for (int k = 0; k < varCount; k++)
                {
                    tempSample.DataArraySingle[k] = sample.DataArraySingle[k];
                }

                for (int j = 0; j < ClassCount; j++)
                {
                    tempSample.DataArraySingle[varCount] = (float)j;
                    boost.Predict(tempSample, null, weakResponses);
                    double sum = weakResponses.Sum().Val0;
                    if (maxSum < sum)
                    {
                        maxSum = sum;
                        bestClass = j + 'A';
                    }
                }

                r = (Math.Abs(bestClass - responses.DataArraySingle[i]) < float.Epsilon) ? 1 : 0;

                if (i < ntrainSamples)
                    trainHr += r;
                else
                    testHr += r;
            }

            testHr /= (double)(nsamplesAall - ntrainSamples);
            trainHr /= (double)ntrainSamples;
            Console.WriteLine("Recognition rate: train = {0:F1}%, test = {1:F1}%", trainHr * 100.0, testHr * 100.0);
            Console.WriteLine("Number of trees: {0}", boost.GetWeakPredictors().Total);

            // Save classifier to file if needed
            if (filenameToSave != null)
            {
                boost.Save(filenameToSave);
            }


            Console.Read();


            tempSample.Dispose();
            weakResponses.Dispose();
            if (varType != null) varType.Dispose();
            data.Dispose();
            responses.Dispose();
            boost.Dispose();
        }
开发者ID:healtech,项目名称:opencvsharp,代码行数:101,代码来源:LetterRecog.cs

示例4: DisposeToNull

 /// <summary>
 /// オブジェクトが確保されている場合にDisposeします
 /// </summary>
 /// <param name="obj"></param>
 public static void DisposeToNull(ref CvMat obj)
 {
     if (obj != null)
     {
         obj.Dispose();
         obj = null;
     }
 }
开发者ID:guozanhua,项目名称:KinectMotionCapture,代码行数:12,代码来源:CvEx.cs

示例5: InitCvMat

 /// <summary>
 /// 領域が未確保またはフォーマットが異なる場合は新しく領域を確保します.
 /// </summary>
 /// <param name="dest"></param>
 /// <param name="rows"></param>
 /// <param name="cols"></param>
 /// <param name="type"></param>
 public static void InitCvMat(ref CvMat dest, int rows, int cols, MatrixType type)
 {
     if (dest == null || dest.Cols != cols || dest.Rows != rows || dest.ElemType != type)
     {
         if (dest != null)
         {
             dest.Dispose();
         }
         dest = new CvMat(rows, cols, type);
     }
 }
开发者ID:guozanhua,项目名称:KinectMotionCapture,代码行数:18,代码来源:CvEx.cs

示例6: Transform

        private void Transform(double[] srcPoints)
        {
            const int POINT_COUNT = 8;
            System.Diagnostics.Debug.Assert(srcPoints.Length == POINT_COUNT);
            double leftOffset = (srcGrid.Width - imgRaw.Source.Width) / 2;
            double topOffset = (srcGrid.Height - imgRaw.Source.Height) / 2;

            CvMat srcPointsMat = new CvMat(4, 2, MatrixType.F64C1, srcPoints);
            CvMat dstPointsMat = new CvMat(4, 2, MatrixType.F64C1,
                new double[POINT_COUNT] {
                    dstGrid.Width * 1 / 4, dstGrid.Height * 1 / 4, dstGrid.Width * 3 / 4, dstGrid.Height * 1 / 4,
                    dstGrid.Width * 3 / 4, dstGrid.Height * 3 / 4, dstGrid.Width * 1 / 4, dstGrid.Height * 3 / 4 });
            CvMat viewerHomographyMatrix = new CvMat(3, 3, MatrixType.F64C1, new double[9]);
            Cv.FindHomography(srcPointsMat, dstPointsMat, viewerHomographyMatrix);

            CV.Mat src = WriteableBitmapConverter.ToMat((WriteableBitmap)imgRaw.Source);
            CV.Mat dst = new CV.Mat((int)srcGrid.Height, (int)srcGrid.Width, src.Type());
            Cv.WarpPerspective(src.ToCvMat(), dst.ToCvMat(), viewerHomographyMatrix);
            imgTransformed.Source = WriteableBitmapConverter.ToWriteableBitmap(dst);

            srcPointsMat.Dispose();
            dstPointsMat.Dispose();
            src.Dispose();
            dst.Dispose();
        }
开发者ID:cryspharos,项目名称:HomographyMatrix,代码行数:25,代码来源:MainWindow.xaml.cs


注:本文中的CvMat.Dispose方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。