当前位置: 首页>>代码示例>>C++>>正文


C++ Factory::TrainAllMethodsForClassification方法代码示例

本文整理汇总了C++中tmva::Factory::TrainAllMethodsForClassification方法的典型用法代码示例。如果您正苦于以下问题:C++ Factory::TrainAllMethodsForClassification方法的具体用法?C++ Factory::TrainAllMethodsForClassification怎么用?C++ Factory::TrainAllMethodsForClassification使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tmva::Factory的用法示例。


在下文中一共展示了Factory::TrainAllMethodsForClassification方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: Boost

void Boost(){
   TString outfileName = "boost.root";
   TFile* outputFile = TFile::Open( outfileName, "RECREATE" );
   TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
                                               "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D" );
   factory->AddVariable( "var0", 'F' );
   factory->AddVariable( "var1", 'F' );
   TFile *input(0);
   TString fname = "./data.root";
   if (!gSystem->AccessPathName( fname )) {
      // first we try to find tmva_example.root in the local directory
      std::cout << "--- BOOST       : Accessing " << fname << std::endl;
      input = TFile::Open( fname );
   }
   else {
      gROOT->LoadMacro( "../development/createData.C");
      create_circ(20000);
      cout << " created data.root with data and circle arranged in half circles"<<endl;
      input = TFile::Open( fname );
   }
   if (!input) {
      std::cout << "ERROR: could not open data file" << std::endl;
      exit(1);
   }
   TTree *signal     = (TTree*)input->Get("TreeS");
   TTree *background = (TTree*)input->Get("TreeB");
   Double_t signalWeight     = 1.0;
   Double_t backgroundWeight = 1.0;
   
   gROOT->cd( outfileName+TString(":/") );
   factory->AddSignalTree    ( signal,     signalWeight     );
   factory->AddBackgroundTree( background, backgroundWeight );
   factory->PrepareTrainingAndTestTree( "", "",
                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );

   TString fisher="H:!V";
   factory->BookMethod( TMVA::Types::kFisher, "Fisher", fisher );
   factory->BookMethod( TMVA::Types::kFisher, "FisherBoost", fisher+":Boost_Num=100:Boost_Type=AdaBoost" );
   factory->BookMethod( TMVA::Types::kFisher, "FisherBoostLog", fisher+":Boost_Num=100:Boost_Transform=log:Boost_Type=AdaBoost:Boost_AdaBoostBeta=1.0" );
   factory->BookMethod( TMVA::Types::kFisher, "FisherBoostLog2", fisher+":Boost_Num=100:Boost_Transform=log:Boost_Type=AdaBoost:Boost_AdaBoostBeta=2.0" );
   factory->BookMethod( TMVA::Types::kFisher, "FisherBoostStep", fisher+":Boost_Num=100:Boost_Transform=step:Boost_Type=AdaBoost:Boost_AdaBoostBeta=1.0" );
   factory->BookMethod( TMVA::Types::kFisher, "FisherBoostStep2", fisher+":Boost_Num=100:Boost_Transform=step:Boost_Type=AdaBoost:Boost_AdaBoostBeta=1.2" );
   factory->BookMethod( TMVA::Types::kFisher, "FisherBoostStep3", fisher+":Boost_Num=100:Boost_Transform=step:Boost_Type=AdaBoost:Boost_AdaBoostBeta=1.5" );

  // Train MVAs using the set of training events
   factory->TrainAllMethodsForClassification();

   // ---- Evaluate all MVAs using the set of test events
   factory->TestAllMethods();

   // ----- Evaluate and compare performance of all configured MVAs
   factory->EvaluateAllMethods();

   // --------------------------------------------------------------
   
   // Save the output
   outputFile->Close();
   
   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVAClassification is done!" << std::endl;
   
   delete factory;
   
   // Launch the GUI for the root macros
   if (!gROOT->IsBatch()) TMVAGui( outfileName );
   
   
}
开发者ID:TopBrussels,项目名称:TopTreeAnalysisBase,代码行数:68,代码来源:Boost.C

示例2: Example_Eric


//.........这里部分代码省略.........
      factory->BookMethod( TMVA::Types::kFDA, "FDA_SA",
                           "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=SA:MaxCalls=15000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" );

   if (Use["FDA_MT"])
      factory->BookMethod( TMVA::Types::kFDA, "FDA_MT",
                           "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );

   if (Use["FDA_GAMT"])
      factory->BookMethod( TMVA::Types::kFDA, "FDA_GAMT",
                           "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );

   if (Use["FDA_MCMT"])
      factory->BookMethod( TMVA::Types::kFDA, "FDA_MCMT",
                           "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20" );

   // TMVA ANN: MLP (recommended ANN) -- all ANNs in TMVA are Multilayer Perceptrons
   if (Use["MLP"])
      factory->BookMethod( TMVA::Types::kMLP, "MLP", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5" );

   if (Use["MLPBFGS"])
      factory->BookMethod( TMVA::Types::kMLP, "MLPBFGS", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS" );


   // CF(Clermont-Ferrand)ANN
   if (Use["CFMlpANN"])
      factory->BookMethod( TMVA::Types::kCFMlpANN, "CFMlpANN", "!H:!V:NCycles=2000:HiddenLayers=N+1,N"  ); // n_cycles:#nodes:#nodes:...  
  
   // Tmlp(Root)ANN
   if (Use["TMlpANN"])
      factory->BookMethod( TMVA::Types::kTMlpANN, "TMlpANN", "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3"  ); // n_cycles:#nodes:#nodes:...
  
   // Support Vector Machine
   if (Use["SVM"])
      factory->BookMethod( TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" );
   
   // Boosted Decision Trees
   if (Use["BDTG"]) // Gradient Boost
      factory->BookMethod( TMVA::Types::kBDT, "BDTG", 
                           "!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.30:UseBaggedGrad:GradBaggingFraction=0.6:SeparationType=GiniIndex:nCuts=20:NNodesMax=5" );

   if (Use["BDT"])  // Adaptive Boost
      factory->BookMethod( TMVA::Types::kBDT, "BDT", 
                           "!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" );
   
   if (Use["BDTB"]) // Bagging
      factory->BookMethod( TMVA::Types::kBDT, "BDTB", 
                           "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" );

   if (Use["BDTD"]) // Decorrelation + Adaptive Boost
      factory->BookMethod( TMVA::Types::kBDT, "BDTD", 
                           "!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning:VarTransform=Decorrelate" );
   
   // RuleFit -- TMVA implementation of Friedman's method
   if (Use["RuleFit"])
      factory->BookMethod( TMVA::Types::kRuleFit, "RuleFit",
                           "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02" );

   // --------------------------------------------------------------------------------------------------

   // As an example how to use the ROOT plugin mechanism, book BDT via
   // plugin mechanism
   if (Use["Plugin"]) {
         //
         // first the plugin has to be defined, which can happen either through the following line in the local or global .rootrc:
         //
         // # plugin handler          plugin name(regexp) class to be instanciated library        constructor format
         // [email protected]@MethodBase:  ^BDT                TMVA::MethodBDT          TMVA.1         "MethodBDT(TString,TString,DataSet&,TString)"
         // 
         // or by telling the global plugin manager directly
      gPluginMgr->AddHandler("[email protected]@MethodBase", "BDT", "TMVA::MethodBDT", "TMVA.1", "MethodBDT(TString,TString,DataSet&,TString)");
      factory->BookMethod( TMVA::Types::kPlugins, "BDT",
                           "!H:!V:NTrees=400:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=CostComplexity:PruneStrength=50" );
   }

   // --------------------------------------------------------------------------------------------------

   // ---- Now you can tell the factory to train, test, and evaluate the MVAs

   // Train MVAs using the set of training events
   factory->TrainAllMethodsForClassification();

   // ---- Evaluate all MVAs using the set of test events
   factory->TestAllMethods();

   // ----- Evaluate and compare performance of all configured MVAs
   factory->EvaluateAllMethods();    

   // --------------------------------------------------------------
   
   // Save the output
   outputFile->Close();

   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVAClassification is done!" << std::endl;      

   delete factory;

   // Launch the GUI for the root macros
   if (!gROOT->IsBatch()) TMVAGui( outfileName );
}
开发者ID:jgomezca,项目名称:combinedOneLeptonStopAnalysis,代码行数:101,代码来源:Example_Eric2.C

示例3: main

int main() 
{
   // this loads the library
   TMVA::Tools::Instance();

   //---------------------------------------------------------------
   // default MVA methods to be trained + tested
   
   std::map<std::string,int> Use;
   Use["Cuts"]            =1;
   Use["BDT"]             =1;
   
   // ---------------------------------------------------------------

   std::cout << std::endl;
   std::cout << "==> Start TMVAClassification" << std::endl;

   // Create a new root output file.
   TString outfileName( "TMVA_output.root" );
   TFile* outputFile = TFile::Open( outfileName, "RECREATE" );

   TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile, 
                                               "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D" );

    // Add the variables you want to consider 
    
    //factory->AddVariable( "MT := MT",  'F' );
    //factory->AddVariable( "nJets := nJets",  'F' );
    factory->AddVariable( "MET := MET",                   'F' );
    factory->AddVariable( "MT2W := MT2W",                 'F' );
    factory->AddVariable( "dPhiMETjet := dPhiMETjet",     'F' );
    factory->AddVariable( "HTratio := HTratio",           'F' );
    factory->AddVariable( "HadronicChi2 := HadronicChi2", 'F' );
    factory->AddVariable( "nWTag := nWTag",               'I' );
    
    // Open samples
    
    TFile* f_signal = TFile::Open((string(MICROTUPLES_FOLDER)+"signal.root").c_str());
    TFile* f_ttbar  = TFile::Open((string(MICROTUPLES_FOLDER)+"ttbar.root" ).c_str());
    //TFile* f_W2Jets = TFile::Open((string(MICROTUPLES_FOLDER)+"W2Jets.root").c_str());
    //TFile* f_W3Jets = TFile::Open((string(MICROTUPLES_FOLDER)+"W3Jets.root").c_str());
    //TFile* f_W4Jets = TFile::Open((string(MICROTUPLES_FOLDER)+"W4Jets.root").c_str());
    
    TTree* signal = (TTree*) f_signal->Get("microTuple");
    TTree* ttbar  = (TTree*) f_ttbar ->Get("microTuple");
    //TTree* W2Jets = (TTree*) f_W2Jets->Get("microTuple");
    //TTree* W3Jets = (TTree*) f_W3Jets->Get("microTuple");
    //TTree* W4Jets = (TTree*) f_W4Jets->Get("microTuple");

    // Register the trees

//    float weightSignal     = 1.0   * 20000.0 / getNumberOfEvent(signal);
//    float weightBackground = 225.2 * 20000.0 / getNumberOfEvent(ttbar);
    float weightSignal     = 1.0;
    float weightBackground = 1.0;

    factory->AddSignalTree    ( signal, weightSignal    );
    factory->AddBackgroundTree( ttbar,  weightBackground);

    /*
    cout << " signal ; w = " << 1.0   * 20000.0 / getNumberOfEvent(signal) << endl;
    factory->AddSignalTree    ( signal, 1.0   * 20000.0 / getNumberOfEvent(signal));
    cout << " ttbar ; w = "  << 225.2 * 20000.0 / getNumberOfEvent(ttbar) << endl;
    factory->AddBackgroundTree( ttbar,  234.0 * 20000.0 / getNumberOfEvent(ttbar));
    cout << " W2Jets ; w = " << 2159  * 20000.0 / getNumberOfEvent(W2Jets) << endl;
    factory->AddBackgroundTree( W2Jets, 2159  * 20000.0 / getNumberOfEvent(W2Jets));
    cout << " W3Jets ; w = " << 640   * 20000.0 / getNumberOfEvent(W3Jets) << endl;
    factory->AddBackgroundTree( W3Jets, 640   * 20000.0 / getNumberOfEvent(W3Jets));
    cout << " W4Jets ; w = " << 264   * 20000.0 / getNumberOfEvent(W4Jets) << endl;
    factory->AddBackgroundTree( W4Jets, 264   * 20000.0 / getNumberOfEvent(W4Jets));
    */

    // Add preselection cuts
   
    std::string preselectionCutsSig("nJets > 4 && MET > 80 && MT > 100");
    std::string preselectionCutsBkg("nJets > 4 && MET > 80 && MT > 100");

    // Prepare the training

    factory->PrepareTrainingAndTestTree( preselectionCutsSig.c_str(), preselectionCutsBkg.c_str(),
                    "nTrain_Signal=40000:nTrain_Background=300000:nTest_Signal=40000:nTest_Background=300000:SplitMode=Random:NormMode=EqualNumEvents:!V" );

    // Cut optimisation
    //if (Use["Cuts"])     factory->BookMethod( TMVA::Types::kCuts, "Cuts",
    //                     "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart" );
    if (Use["BDT"])      factory->BookMethod( TMVA::Types::kBDT, "BDT", 
                         "!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning");
   
   // --------------------------------------------------------------

   // Train MVAs using the set of training events
   factory->TrainAllMethodsForClassification();

   // Evaluate all MVAs using the set of test events
   factory->TestAllMethods();

   // Evaluate and compare performance of all configured MVAs
   factory->EvaluateAllMethods();    

   // --------------------------------------------------------------
//.........这里部分代码省略.........
开发者ID:jgomezca,项目名称:combinedOneLeptonStopAnalysis,代码行数:101,代码来源:trainMVA_AdaBoost.C


注:本文中的tmva::Factory::TrainAllMethodsForClassification方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。