当前位置: 首页>>代码示例>>C++>>正文


C++ Factory::EvaluateAllMethods方法代码示例

本文整理汇总了C++中tmva::Factory::EvaluateAllMethods方法的典型用法代码示例。如果您正苦于以下问题:C++ Factory::EvaluateAllMethods方法的具体用法?C++ Factory::EvaluateAllMethods怎么用?C++ Factory::EvaluateAllMethods使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tmva::Factory的用法示例。


在下文中一共展示了Factory::EvaluateAllMethods方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: regressphi

void regressphi() {
   TMVA::Tools::Instance();
   std::cout << "==> Start TMVAClassification" << std::endl;
  
   // Create a ROOT output file where TMVA will store ntuples, histograms, etc.
   TString outfileName( "TMVA.root" );
   TFile* outputFile = TFile::Open( outfileName, "RECREATE" );
   TMVA::Factory *factory = new TMVA::Factory( "mva", outputFile,
                                               "!V:!Silent:Color:DrawProgressBar" );
   factory->AddVariable( "npv"                , 'F' ); 
   factory->AddVariable( "u"                  , 'F' ); 
   factory->AddVariable( "uphi"               , 'F' );
   factory->AddVariable( "chsumet/sumet"      , 'F' ); 
   factory->AddVariable( "tku"                , 'F' );
   factory->AddVariable( "tkuphi"             , 'F' );
   factory->AddVariable( "nopusumet/sumet"    , 'F' );
   factory->AddVariable( "nopuu"              , 'F' );
   factory->AddVariable( "nopuuphi"           , 'F' );
   factory->AddVariable( "pusumet/sumet"      , 'F' );
   factory->AddVariable( "pumet"              , 'F' );
   factory->AddVariable( "pumetphi"           , 'F' );
   factory->AddVariable( "pucsumet/sumet"     , 'F' );
   factory->AddVariable( "pucu"               , 'F' );
   factory->AddVariable( "pucuphi"            , 'F' );
   factory->AddVariable( "jspt_1"             , 'F' );
   factory->AddVariable( "jseta_1"            , 'F' );
   factory->AddVariable( "jsphi_1"            , 'F' );
   factory->AddVariable( "jspt_2"             , 'F' );
   factory->AddVariable( "jseta_2"            , 'F' );
   factory->AddVariable( "jsphi_2"            , 'F' );
   factory->AddVariable( "nalljet"            , 'I' );
   factory->AddVariable( "njet"               , 'I' );
    
   factory->AddTarget( "rphi_z-uphi+ 2.*TMath::Pi()*(rphi_z-uphi < -TMath::Pi()) - 2.*TMath::Pi()*(rphi_z-uphi > TMath::Pi())  " ); 
   TString  lName       = "../Jets/r11-dimu_nochs_v2.root";  TFile *lInput = TFile::Open(lName);
   TTree   *lRegress    = (TTree*)lInput    ->Get("Flat");

   Double_t lRWeight = 1.0;
   factory->AddRegressionTree( lRegress   , lRWeight );
   TCut lCut = "nbtag == 0"; //Cut to remove real MET
   //(rpt_z < 40 || (rpt_z > 40 && rpt_z+u1 < 40)) && nbtag == 0 "; ==> stronger cut to remove Real MET

   factory->PrepareTrainingAndTestTree( lCut,
					"nTrain_Regression=0:nTest_Regression=0:SplitMode=Block:NormMode=NumEvents:!V" );

   // Boosted Decision Trees
   factory->BookMethod( TMVA::Types::kBDT, "RecoilPhiRegress_data_clean2_njet",
			"!H:!V:VarTransform=None:nEventsMin=200:NTrees=100:BoostType=Grad:Shrinkage=0.1:MaxDepth=100:NNodesMax=100000:UseYesNoLeaf=F:nCuts=2000");//MaxDepth=100

   factory->TrainAllMethods();
   factory->TestAllMethods();
   factory->EvaluateAllMethods();
   outputFile->Close();

   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVAClassification is done!" << std::endl;
   delete factory;
   //if (!gROOT->IsBatch()) TMVAGui( outfileName );
}
开发者ID:anantoni,项目名称:CMG,代码行数:59,代码来源:regressphi.C

示例2: TMVAClassification

void TMVAClassification(char* trainFile, char* tree, 
                        char* mycuts, char*  mycutb, char* inputVars[], int size) 
{
   // this loads the library
   TMVA::Tools::Instance();

   // Create a new root output file.
   TFile* outputFile = TFile::Open( "TMVA.root", "RECREATE" );

   // Create the factory object.
   TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile, 
                                               "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D" );
   // ---------- input variables 
   for (int ivar = 0; ivar < size; ++ivar) {
     factory->AddVariable(inputVars[ivar], 'F');
   }

   // read training and test data
   TFile *input = TFile::Open( trainFile);
   TTree *signal     = (TTree*)input->Get(tree);
   TTree *background = (TTree*)input->Get(tree);
   

   // global event weights per tree 
   Double_t signalWeight     = 1.0;
   Double_t backgroundWeight = 1.0;

   // ====== register trees ====================================================
   // you can add an arbitrary number of signal or background trees
   factory->AddSignalTree    ( signal,     signalWeight     );
   factory->AddBackgroundTree( background, backgroundWeight );

   // tell the factory to use all remaining events in the trees after training for testing:
   factory->PrepareTrainingAndTestTree( TCut(mycuts), TCut(mycutb),
                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );

   // If no numbers of events are given, half of the events in the tree are used for training, and 
   // the other half for testing:

   // ---- Use BDT: Adaptive Boost
   factory->BookMethod( TMVA::Types::kBDT, "BDT", 
                        "!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" );
 
   // ---- Train MVAs using the set of training events
   factory->TrainAllMethods();

   // ---- Evaluate all MVAs using the set of test events
   factory->TestAllMethods();

   // ----- Evaluate and compare performance of all configured MVAs
   factory->EvaluateAllMethods();    

   // Save the output
   outputFile->Close();

   std::cout << "==> TMVAClassification is done!" << std::endl;      

   delete factory;
}
开发者ID:kalanand,项目名称:OptimalCarInsurancePolicy,代码行数:59,代码来源:Analyze.C

示例3: process

void process(const std::vector<std::string>& inputFiles, const std::string& name, const std::string& outputFile) {
  TChain* signal = loadChain(inputFiles, "signal");
  TChain* background = loadChain(inputFiles, "background");

  TFile* output = TFile::Open(outputFile.c_str(), "recreate");

  TMVA::Factory* factory = new TMVA::Factory(name.c_str(), output, "V");
  factory->AddSignalTree(signal, 1.);
  factory->AddBackgroundTree(background, 1.);

  //{
    //factory->AddVariable("lightJet1p2_Pt");
    //factory->AddVariable("leptonic_B_Pt");
    //factory->AddVariable("leptonic_Top_Pt");
    //factory->AddVariable("leptonic_Top_M");
    //factory->AddVariable("hadronic_B_Pt");
    //factory->AddVariable("hadronic_W_M");
    //factory->AddVariable("hadronic_Top_Pt");
    //factory->AddVariable("hadronic_Top_M");
    //factory->AddVariable("delta_R_tops");
    //factory->AddVariable("delta_R_lightjets");
    //factory->AddVariable("leptonic_B_CSV");
    //factory->AddVariable("hadronic_B_CSV");
  //}


  // chi^2 style
  {
    factory->AddVariable("leptonic_Top_M");
    factory->AddVariable("hadronic_W_M");
    factory->AddVariable("hadronic_Top_M");
    factory->AddVariable("ht_fraction");
  }

  factory->SetWeightExpression("weight");

  factory->PrepareTrainingAndTestTree("", "", "V:VerboseLevel=Info:nTrain_Signal=100000:nTrain_Background=100000:nTest_Signal=100000:nTest_Background=100000");

  factory->BookMethod(TMVA::Types::kBDT, "BDT", "V:BoostType=AdaBoost:nCuts=20:VarTransform=D");
  factory->BookMethod(TMVA::Types::kMLP, "NN", "V:VarTransform=D");
  //factory->BookMethod(TMVA::Types::kPDERS, "PDERS", "V");

  factory->TrainAllMethods();
  factory->TestAllMethods();
  factory->EvaluateAllMethods();

  output->Close();
  delete output;

  delete signal;
  delete background;
}
开发者ID:IPNL-CMS,项目名称:MttTools,代码行数:52,代码来源:trainBDT.cpp

示例4: test_train

void test_train(TString signalName = "WW",
		TString bkgName = "DY")
{
  TFile *outFile = new TFile("myAnalysisFile.root","RECREATE");
  
  TMVA::Factory *factory = new TMVA::Factory(signalName, outFile,"");
  
  TString directory = "../rootFiles/SF/MediumIDTighterIP/";
  //signalName = directory + signalName;
  
  //defining WW signal
  TFile *MySignalFile = new TFile("../rootFiles/SF/MediumIDTighterIP/WW.root","READ");
  TTree* sigTree = (TTree*)MySignalFile->Get("nt");
  factory->AddSignalTree(sigTree,1);
  
  //defining DY background
  TFile *MyBkgFile = new TFile("../rootFiles/SF/MediumIDTighterIP/DY.root","READ");
  TTree* bkgTree = (TTree*)MyBkgFile->Get("nt");
  factory->AddBackgroundTree(bkgTree,1);

  factory->SetWeightExpression("baseW");

  //************************************ FACTORY  
  
  factory->AddVariable("fullpmet");
  factory->AddVariable("trkpmet");
  factory->AddVariable("ratioMet");
  factory->AddVariable("ptll");
  factory->AddVariable("mth");
  factory->AddVariable("jetpt1");
  factory->AddVariable("ptWW");
  factory->AddVariable("dphilljet");
  factory->AddVariable("dphillmet");
  factory->AddVariable("dphijet1met");
  factory->AddVariable("nvtx");

  factory->PrepareTrainingAndTestTree("",500,500,500,500);
  cout<<"I've prepared trees"<<endl;
  //factory->BookMethod(TMVA::Types::kFisher, "Fisher","");
  factory->BookMethod(TMVA::Types::kBDT, "BDT","");
  
  cout<<"I've booked method"<<endl;
  factory->TrainAllMethods();
  factory->TestAllMethods();
  cout<<"I've tested all methods"<<endl;
  factory->EvaluateAllMethods();
  cout<<"I've evaluated all methods"<<endl;
  
}
开发者ID:NTrevisani,项目名称:WW13TeV,代码行数:49,代码来源:mva2.C

示例5: trainBDT

void trainBDT(void)
{
	// Open input file and get tree
	TFile *infile = new TFile("l3bdt.root");
	TTree *l3tree = (TTree*)infile->Get("l3tree");
	if(l3tree == NULL){
		cout << "Couldn't open \"l3bdt.root\"!" << endl;
		return;
	}

	// Open output root file (for TMVA)
	TFile *outfile = new TFile("l3BDT_out.root", "RECREATE");
	TMVA::Factory *fac = new TMVA::Factory("L3",outfile,"");

	// Specify input tree that contains both signal and background 
	TCut signalCut("is_good==1");
	TCut backgroundCut("is_good==0");
	fac->SetInputTrees(l3tree, signalCut, backgroundCut);

	// Add variables
	fac->AddVariable("Nstart_counter",      'I');
	fac->AddVariable("Ntof",                'I');
	fac->AddVariable("Nbcal_points",        'I');
	fac->AddVariable("Nbcal_clusters",      'I');
	fac->AddVariable("Ebcal_points",        'F');
	fac->AddVariable("Ebcal_clusters",      'F');
	fac->AddVariable("Nfcal_clusters",      'I');
	fac->AddVariable("Efcal_clusters",      'F');
	fac->AddVariable("Ntrack_candidates",   'I');
	fac->AddVariable("Ptot_candidates",     'F');

	TCut preSelectCut("");
	fac->PrepareTrainingAndTestTree(preSelectCut,"");
	fac->BookMethod(TMVA::Types::kBDT, "BDT", "");

	fac->TrainAllMethods();
	fac->TestAllMethods();
	fac->EvaluateAllMethods();

	delete fac;

	outfile->Close();
	delete outfile;
}
开发者ID:JeffersonLab,项目名称:sim-recon,代码行数:44,代码来源:trainBDT.C

示例6: trainBJetIdMVA

void trainBJetIdMVA(TString SELECTION)
{
  // the training is done using a dedicated tree format
  TFile *src = TFile::Open("bjetId_"+SELECTION+".root");
  TTree *tr  = (TTree*)src->Get("jets"); 
  
  TFile *outf    = new TFile("bjetId_"+SELECTION+"_MVA.root","RECREATE");

  TCut signalCut       = "abs(partonId) == 5";
  TCut bkgCut          = "abs(partonId) != 5";
  TCut preselectionCut = "btagIdx<4 && etaIdx<4 && etaIdx>-1 && ptIdx<4";
  
  int N = 100000;
  cout<<"NUMBER OF TRAINING EVENTS = "<<N<<endl;
  
  TMVA::Factory* factory = new TMVA::Factory("factory_"+SELECTION+"_",outf,"!V:!Silent:Color:DrawProgressBar:Transformations=I;G:AnalysisType=Classification" );
  
  factory->SetInputTrees(tr,signalCut,bkgCut);
  
  factory->AddVariable("btagIdx",'I');
  factory->AddVariable("etaIdx" ,'I');
  factory->AddVariable("btag"   ,'F');
  factory->AddVariable("eta"    ,'F');

  char name[1000];
  sprintf(name,"nTrain_Signal=%d:nTrain_Background=%d:nTest_Signal=%d:nTest_Background=%d",N,N,N,N);
  factory->PrepareTrainingAndTestTree(preselectionCut,name);

  // specify the training methods
  factory->BookMethod(TMVA::Types::kLikelihood,"Likelihood");
  //factory->BookMethod(TMVA::Types::kBDT,"BDT_DEF");
  //factory->BookMethod(TMVA::Types::kBDT,"BDT_ADA","NTrees=600:AdaBoostBeta=0.1:nCuts=35"); 
  //factory->BookMethod(TMVA::Types::kBDT,"BDT_GRAD1","NTrees=600:nCuts=40:BoostType=Grad:Shrinkage=0.5");  
  factory->BookMethod(TMVA::Types::kBDT,"BDT_GRAD2","NTrees=600:nCuts=25:BoostType=Grad:Shrinkage=0.2");
  factory->TrainAllMethods();
  factory->TestAllMethods();
  factory->EvaluateAllMethods(); 
}
开发者ID:UAEDF,项目名称:vbfHbb,代码行数:38,代码来源:trainBJetIdMVA.C

示例7: TMVAtest

void TMVAtest(){
  //gSystem->Load("../lib/slc5_amd64_gcc462/libTAMUWWMEPATNtuple.so");
  gSystem->Load("libPhysics");
  //gSystem->Load("EvtTreeForAlexx_h.so");
  gSystem->Load("libTMVA.1");
  gSystem->Load("AutoDict_vector_TLorentzVector__cxx.so");
  TMVA::Tools::Instance();
  TFile* outputFile = TFile::Open("TMVA1.root", "RECREATE");
  TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification",outputFile,"V=true:Color:DrawProgressBar");// ":Transformations=I;D;P;G,D" );
  TFile* signal = TFile::Open("/uscms_data/d2/aperloff/Spring12ME7TeV/MEResults/microNtuples_oldStructure/microWW_EPDv01.root");
  TFile* bkg = TFile::Open("/uscms_data/d2/aperloff/Spring12ME7TeV/MEResults/microNtuples_oldStructure/microWJets_EPDv01.root");

  TTree* stree = (TTree*)signal->Get("METree");
  TTree* btree = (TTree*)bkg->Get("METree");
  factory->AddSignalTree(stree,1.0);
  factory->AddBackgroundTree(btree,1.0);


  factory->SetSignalWeightExpression("1.0");
  factory->SetBackgroundWeightExpression("1.0");
  factory->AddVariable("tEventProb[0]");
  factory->AddVariable("tEventProb[1]");
  factory->AddVariable("tEventProb[2]");

  //factory->AddVariable("tEventProb0 := tEventProb[0]",'F');
  //factory->AddVariable("tEventProb1 := tEventProb[1]",'F');
  //factory->AddVariable("tEventProb2 := tEventProb[2]",'F');
  TCut test("Entry$>-2 && jLV[1].Pt()>30");
  TCut mycuts (test);
  factory->PrepareTrainingAndTestTree(mycuts,mycuts,"nTrain_Signal=0:nTrain_Background=0:nTest_Signal=0:nTest_Background=0:SplitMode=Random:NormMode=None:V=true:VerboseLevel=DEBUG");
  factory->BookMethod( TMVA::Types::kBDT, "BDT","!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" );
  factory->TrainAllMethods();
  factory->TestAllMethods();
  factory->EvaluateAllMethods();
  outputFile->Close(); 

}
开发者ID:aperloff,项目名称:TAMUWW,代码行数:37,代码来源:TMVAtest.C

示例8: main


//.........这里部分代码省略.........
 }
 // Apply additional cuts on the signal and background samples (can be different)
 
//  // If no numbers of events are given, half of the events in the tree are used 
 // for training, and the other half for testing:
 //    factory->PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" );  

 // ---- Book MVA methods
 //
 // please lookup the various method configuration options in the corresponding cxx files, eg:
 // src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
 // it is possible to preset ranges in the option string in which the cut optimisation should be done:
 // "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable

 // PDE - RS method
  if (Use["PDERS"])
    factory->BookMethod( TMVA::Types::kPDERS, "PDERS", "!H:!V:Normthree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=40:NEventsMax=60:VarTransform=None" );
   // And the options strings for the MinMax and RMS methods, respectively:
   //      "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" );   
   //      "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" );   

 if (Use["PDEFoam"])
   factory->BookMethod( TMVA::Types::kPDEFoam, "PDEFoam", "!H:!V:MultiTargetRegression=F:TargetSelection=Mpv:TailCut=0.001:VolFrac=0.3:nActiveCells=500:nSampl=2000:nBin=5:Compress=T:Kernel=None:Nmin=10:VarTransform=None" );

 // K-Nearest Neighbour classifier (KNN)
 if (Use["KNN"])
   factory->BookMethod( TMVA::Types::kKNN, "KNN", "nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" );

 // Linear discriminant
 if (Use["LD"])  factory->BookMethod( TMVA::Types::kLD, "LD","!H:!V:VarTransform=G,U,D" );

 // Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA)
 if (Use["FDA_MC"]) 
     factory->BookMethod( TMVA::Types::kFDA, "FDA_MC",
                          "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=MC:SampleSize=100000:Sigma=0.1:VarTransform=D" );
   
 if (Use["FDA_GA"]) // can also use Simulated Annealing (SA) algorithm (see Cuts_SA options) .. the formula of this example is good for parabolas
   factory->BookMethod( TMVA::Types::kFDA, "FDA_GA",
                           "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:PopSize=100:Cycles=3:Steps=30:Trim=True:SaveBestGen=1:VarTransform=Norm" );

 if (Use["FDA_MT"]) 
   factory->BookMethod( TMVA::Types::kFDA, "FDA_MT",
                           "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );

 if (Use["FDA_GAMT"]) 
   factory->BookMethod( TMVA::Types::kFDA, "FDA_GAMT",
                           "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );

   // Neural network (MLP)
 if (Use["MLP"])
//       factory->BookMethod( TMVA::Types::kMLP, "MLP", "!H:!V:VarTransform=Norm:NeuronType=tanh:NCycles=20000:HiddenLayers=N+20:TestRate=6:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8:ConvergenceImprove=1e-6:ConvergenceTests=15:!UseRegulator" );
//         factory->BookMethod( TMVA::Types::kMLP, "MLP", "!H:!V:VarTransform=Norm:NeuronType=tanh:NCycles=200:HiddenLayers=N+20:TestRate=6:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8:ConvergenceImprove=1e-6:ConvergenceTests=15:!UseRegulator" );
// 	factory->BookMethod( TMVA::Types::kMLP, "MLP", "!H:!V:VarTransform=Norm:NeuronType=tanh:NCycles=400:HiddenLayers=N+10:TestRate=6:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8:ConvergenceImprove=1e-6:ConvergenceTests=15" );
// 	factory->BookMethod( TMVA::Types::kMLP, "MLP", "!H:!V:VarTransform=N:NeuronType=tanh:NCycles=200:HiddenLayers=N+10:TestRate=6:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8:ConvergenceImprove=1e-6:ConvergenceTests=15" );
// 	factory->BookMethod( TMVA::Types::kMLP, "MLP", "!H:!V:VarTransform=G,N:NeuronType=tanh:NCycles=200:HiddenLayers=N+5:TestRate=6:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8:ConvergenceImprove=1e-6:ConvergenceTests=15" );
   factory->BookMethod( TMVA::Types::kMLP, "MLP", "!H:!V:NeuronType=tanh:NCycles=250:HiddenLayers=N+5:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8:ConvergenceImprove=1e-6:ConvergenceTests=15:TestRate=10");
	
   // Support Vector Machine
 if (Use["SVM"])
   factory->BookMethod( TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=N" );
//     factory->BookMethod( TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=N,G" );

   // Boosted Decision Trees
 if (Use["BDT"])
//      factory->BookMethod( TMVA::Types::kBDT, "BDT","!H:!V:NTrees=100:nEventsMin=5:BoostType=AdaBoostR2:SeparationType=RegressionVariance:nCuts=20:PruneMethod=CostComplexity:PruneStrength=30" );
//         factory->BookMethod( TMVA::Types::kBDT, "BDT","!H:!V:NTrees=200:nEventsMin=5:BoostType=AdaBoostR2:SeparationType=RegressionVariance:PruneMethod=CostComplexity:PruneStrength=30" );
//         factory->BookMethod( TMVA::Types::kBDT, "BDT","!H:!V:NTrees=300:nEventsMin=5:BoostType=AdaBoostR2:SeparationType=RegressionVariance:PruneMethod=CostComplexity:PruneStrength=30" );
//  	factory->BookMethod( TMVA::Types::kBDT, "BDT","!H:!V:NTrees=100:nEventsMin=5:BoostType=AdaBoostR2:SeparationType=RegressionVariance:PruneMethod=CostComplexity:PruneStrength=30" );
   factory->BookMethod( TMVA::Types::kBDT, "BDT","!H:!V:NTrees=100:nEventsMin=20:BoostType=AdaBoostR2:SeparationType=RegressionVariance:PruneMethod=CostComplexity:PruneStrength=30");
	
 if (Use["BDTG"])
//      factory->BookMethod( TMVA::Types::kBDT, "BDTG","!H:!V:NTrees=2000::BoostType=Grad:Shrinkage=0.1:UseBaggedGrad:GradBaggingFraction=0.5:nCuts=20:MaxDepth=3:NNodesMax=15" );
   factory->BookMethod( TMVA::Types::kBDT, "BDTG","!H:!V:NTrees=1000::BoostType=Grad:Shrinkage=0.1:UseBaggedGrad:GradBaggingFraction=0.5:MaxDepth=5:NNodesMax=25:PruneMethod=CostComplexity:PruneStrength=30");
   // --------------------------------------------------------------------------------------------------
   // ---- Now you can tell the factory to train, test, and evaluate the MVAs

 // Train MVAs using the set of training events
 factory->TrainAllMethods();

 // ---- Evaluate all MVAs using the set of test events
 factory->TestAllMethods();

 // ----- Evaluate and compare performance of all configured MVAs
 factory->EvaluateAllMethods();    

 // --------------------------------------------------------------
   
 // Save the output
 outputFile->Close();

 std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
 std::cout << "==> TMVARegression is done!" << std::endl;      

 delete factory;

 // Launch the GUI for the root macros
//  if (!gROOT->IsBatch()) TMVARegGui( outputFileName.c_str() );

 return 0;
}
开发者ID:Bicocca,项目名称:EOverPCalibration,代码行数:101,代码来源:MVARegression.cpp

示例9: BJetRegression


//.........这里部分代码省略.........

   // Apply additional cuts on the signal and background samples (can be different)
   TCut mycut = ""; // for example: TCut mycut = "abs(var1)<0.5 && abs(var2-0.5)<1";

   // tell the factory to use all remaining events in the trees after training for testing:
   factory->PrepareTrainingAndTestTree( mycut, 
                                        "nTrain_Regression=0:nTest_Regression=0:SplitMode=Random:NormMode=NumEvents:!V" );

   // If no numbers of events are given, half of the events in the tree are used 
   // for training, and the other half for testing:
   //    factory->PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" );  

   // ---- Book MVA methods
   //
   // please lookup the various method configuration options in the corresponding cxx files, eg:
   // src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
   // it is possible to preset ranges in the option string in which the cut optimisation should be done:
   // "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable

   // PDE - RS method
   if (Use["PDERS"])
      factory->BookMethod( TMVA::Types::kPDERS, "PDERS", 
                           "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=40:NEventsMax=60:VarTransform=None" );
   // And the options strings for the MinMax and RMS methods, respectively:
   //      "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" );   
   //      "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" );   

   if (Use["PDEFoam"])
       factory->BookMethod( TMVA::Types::kPDEFoam, "PDEFoam", 
			    "!H:!V:MultiTargetRegression=F:TargetSelection=Mpv:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Compress=T:Kernel=None:Nmin=10:VarTransform=None" );

   // K-Nearest Neighbour classifier (KNN)
   if (Use["KNN"])
      factory->BookMethod( TMVA::Types::kKNN, "KNN", 
                           "nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" );

   // Linear discriminant
   if (Use["LD"])
      factory->BookMethod( TMVA::Types::kLD, "LD", 
                           "!H:!V:VarTransform=None" );

	// Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA)
   if (Use["FDA_MC"]) 
      factory->BookMethod( TMVA::Types::kFDA, "FDA_MC",
                          "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=MC:SampleSize=100000:Sigma=0.1:VarTransform=D" );
   
   if (Use["FDA_GA"]) // can also use Simulated Annealing (SA) algorithm (see Cuts_SA options) .. the formula of this example is good for parabolas
      factory->BookMethod( TMVA::Types::kFDA, "FDA_GA",
                           "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:PopSize=100:Cycles=3:Steps=30:Trim=True:SaveBestGen=1:VarTransform=Norm" );

   if (Use["FDA_MT"]) 
      factory->BookMethod( TMVA::Types::kFDA, "FDA_MT",
                           "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );

   if (Use["FDA_GAMT"]) 
      factory->BookMethod( TMVA::Types::kFDA, "FDA_GAMT",
                           "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );

   // Neural network (MLP)
   if (Use["MLP"])
      factory->BookMethod( TMVA::Types::kMLP, "MLP", "!H:!V:VarTransform=Norm:NeuronType=tanh:NCycles=20000:HiddenLayers=N+20:TestRate=6:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8:ConvergenceImprove=1e-6:ConvergenceTests=15:!UseRegulator" );

   // Support Vector Machine
   if (Use["SVM"])
      factory->BookMethod( TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" );

   // Boosted Decision Trees
   if (Use["BDT"])
     factory->BookMethod( TMVA::Types::kBDT, "BDT",
                           "!H:!V:NTrees=100:MinNodeSize=1.0%:BoostType=AdaBoostR2:SeparationType=RegressionVariance:nCuts=20:PruneMethod=CostComplexity:PruneStrength=30" );

   if (Use["BDTG"])
     factory->BookMethod( TMVA::Types::kBDT, "BDTG",
                           "!H:!V:NTrees=2000::BoostType=Grad:Shrinkage=0.1:UseBaggedBoost:BaggedSampleFraction=0.7:nCuts=200:MaxDepth=3:NNodesMax=15" );
   // --------------------------------------------------------------------------------------------------

   // ---- Now you can tell the factory to train, test, and evaluate the MVAs

   // Train MVAs using the set of training events
   factory->TrainAllMethods();

   // ---- Evaluate all MVAs using the set of test events
   factory->TestAllMethods();

   // ----- Evaluate and compare performance of all configured MVAs
   factory->EvaluateAllMethods();    

   // --------------------------------------------------------------
   
   // Save the output
   outputFile->Close();

   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVARegression is done!" << std::endl;      

   delete factory;

   // Launch the GUI for the root macros
   if (!gROOT->IsBatch()) TMVARegGui( outfileName );
}
开发者ID:zaixingmao,项目名称:H2hh2bbTauTau,代码行数:101,代码来源:BJetRegression.C

示例10: TMVAClassification


//.........这里部分代码省略.........

   if (Use["FDA_MT"])
      factory->BookMethod( TMVA::Types::kFDA, "FDA_MT",
                           "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );

   if (Use["FDA_GAMT"])
      factory->BookMethod( TMVA::Types::kFDA, "FDA_GAMT",
                           "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );

   if (Use["FDA_MCMT"])
      factory->BookMethod( TMVA::Types::kFDA, "FDA_MCMT",
                           "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20" );

   // TMVA ANN: MLP (recommended ANN) -- all ANNs in TMVA are Multilayer Perceptrons
   if (Use["MLP"])
      factory->BookMethod( TMVA::Types::kMLP, "MLP", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:!UseRegulator" );

   if (Use["MLPBFGS"])
      factory->BookMethod( TMVA::Types::kMLP, "MLPBFGS", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:!UseRegulator" );

   if (Use["MLPBNN"])
      factory->BookMethod( TMVA::Types::kMLP, "MLPBNN", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator" ); // BFGS training with bayesian regulators

   // CF(Clermont-Ferrand)ANN
   if (Use["CFMlpANN"])
      factory->BookMethod( TMVA::Types::kCFMlpANN, "CFMlpANN", "!H:!V:NCycles=2000:HiddenLayers=N+1,N"  ); // n_cycles:#nodes:#nodes:...

   // Tmlp(Root)ANN
   if (Use["TMlpANN"])
      factory->BookMethod( TMVA::Types::kTMlpANN, "TMlpANN", "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3"  ); // n_cycles:#nodes:#nodes:...

   // Support Vector Machine
   if (Use["SVM"])
      factory->BookMethod( TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" );

   // Boosted Decision Trees
   if (Use["BDTG"]) // Gradient Boost
      factory->BookMethod( TMVA::Types::kBDT, "BDTG",
                           "!H:!V:NTrees=1000:MinNodeSize=2.5%:BoostType=Grad:Shrinkage=0.10:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=2" );

   if (Use["BDT"])  // Adaptive Boost
      factory->BookMethod( TMVA::Types::kBDT, "BDT",
                           "!H:!V:NTrees=850:MinNodeSize=2.5%:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:UseBaggedBoost:BaggedSampleFraction=0.5:SeparationType=GiniIndex:nCuts=20" );

   if (Use["BDTB"]) // Bagging
      factory->BookMethod( TMVA::Types::kBDT, "BDTB",
                           "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20" );

   if (Use["BDTD"]) // Decorrelation + Adaptive Boost
      factory->BookMethod( TMVA::Types::kBDT, "BDTD",
                           "!H:!V:NTrees=400:MinNodeSize=5%:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:VarTransform=Decorrelate" );

   if (Use["BDTF"])  // Allow Using Fisher discriminant in node splitting for (strong) linearly correlated variables
      factory->BookMethod( TMVA::Types::kBDT, "BDTMitFisher",
                           "!H:!V:NTrees=50:MinNodeSize=2.5%:UseFisherCuts:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20" );

   // RuleFit -- TMVA implementation of Friedman's method
   if (Use["RuleFit"])
      factory->BookMethod( TMVA::Types::kRuleFit, "RuleFit",
                           "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02" );

   // For an example of the category classifier usage, see: TMVAClassificationCategory

   // --------------------------------------------------------------------------------------------------

   // ---- Now you can optimize the setting (configuration) of the MVAs using the set of training events

   // ---- STILL EXPERIMENTAL and only implemented for BDT's !
   // factory->OptimizeAllMethods("SigEffAt001","Scan");
   // factory->OptimizeAllMethods("ROCIntegral","FitGA");

   // --------------------------------------------------------------------------------------------------

   // ---- Now you can tell the factory to train, test, and evaluate the MVAs

   // Train MVAs using the set of training events
   factory->TrainAllMethods();

   // ---- Evaluate all MVAs using the set of test events
   factory->TestAllMethods();

   // ----- Evaluate and compare performance of all configured MVAs
   factory->EvaluateAllMethods();

   // --------------------------------------------------------------

   // Save the output
   outputFile->Close();

   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVAClassification is done!" << std::endl;

   delete factory;

   // Launch the GUI for the root macros
   //if (!gROOT->IsBatch())
     // gROOT->ProcessLine(TString::Format("TMVAGui(\"%s\")", outfileName.Data()));

   // efficiencies( TString fin = "TMVA.root", Int_t type = 2, Bool_t useTMVAStyle = kTRUE );
}
开发者ID:CmsHI,项目名称:ElectroWeak-Jet-Track-Analyses,代码行数:101,代码来源:PhotonPurity_TMVAClassification.C

示例11: TMVAClassificationCategory


//.........这里部分代码省略.........

   // Define the input variables that shall be used for the MVA training
   // note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)"
   // [all types of expressions that can also be parsed by TTree::Draw( "expression" )]
   factory->AddVariable( "var1", 'F' );
   factory->AddVariable( "var2", 'F' );
   factory->AddVariable( "var3", 'F' );
   factory->AddVariable( "var4", 'F' );

   // You can add so-called "Spectator variables", which are not used in the MVA training, 
   // but will appear in the final "TestTree" produced by TMVA. This TestTree will contain the 
   // input variables, the response values of all trained MVAs, and the spectator variables
   factory->AddSpectator( "eta" );

   // load the signal and background event samples from ROOT trees
   TFile *input(0);
   TString fname( "" );
   if (UseOffsetMethod) fname = "../execs/data/toy_sigbkg_categ_offset.root";
   else                 fname = "../execs/data/toy_sigbkg_categ_varoff.root";
   if (!gSystem->AccessPathName( fname )) {
      // first we try to find tmva_example.root in the local directory
      std::cout << "--- TMVAClassificationCategory: Accessing " << fname << std::endl;
      input = TFile::Open( fname );
   } 

   if (!input) {
      std::cout << "ERROR: could not open data file: " << fname << std::endl;
      exit(1);
   }

   TTree *signal     = (TTree*)input->Get("TreeS");
   TTree *background = (TTree*)input->Get("TreeB");

   /// global event weights per tree (see below for setting event-wise weights)
   Double_t signalWeight     = 1.0;
   Double_t backgroundWeight = 1.0;
   
   /// you can add an arbitrary number of signal or background trees
   factory->AddSignalTree    ( signal,     signalWeight     );
   factory->AddBackgroundTree( background, backgroundWeight );
   
   // Apply additional cuts on the signal and background samples (can be different)
   TCut mycuts = ""; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
   TCut mycutb = ""; // for example: TCut mycutb = "abs(var1)<0.5";

   // tell the factory to use all remaining events in the trees after training for testing:
   factory->PrepareTrainingAndTestTree( mycuts, mycutb,
                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );

   // Fisher discriminant   
   factory->BookMethod( TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher" );

   // Likelihood
   factory->BookMethod( TMVA::Types::kLikelihood, "Likelihood", 
                        "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" ); 

   // Categorised classifier
   TMVA::MethodCategory* mcat = 0;
   
   // the variable sets
   TString theCat1Vars = "var1:var2:var3:var4";
   TString theCat2Vars = (UseOffsetMethod ? "var1:var2:var3:var4" : "var1:var2:var3");

   // the Fisher 
   TMVA::MethodBase* fiCat = factory->BookMethod( TMVA::Types::kCategory, "FisherCat","" );
   mcat = dynamic_cast<TMVA::MethodCategory*>(fiCat);
   mcat->AddMethod("abs(eta)<=1.3",theCat1Vars, TMVA::Types::kFisher,"Category_Fisher_1","!H:!V:Fisher");
   mcat->AddMethod("abs(eta)>1.3", theCat2Vars, TMVA::Types::kFisher,"Category_Fisher_2","!H:!V:Fisher");

   // the Likelihood
   TMVA::MethodBase* liCat = factory->BookMethod( TMVA::Types::kCategory, "LikelihoodCat","" );
   mcat = dynamic_cast<TMVA::MethodCategory*>(liCat);
   mcat->AddMethod("abs(eta)<=1.3",theCat1Vars, TMVA::Types::kLikelihood,"Category_Likelihood_1","!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50");
   mcat->AddMethod("abs(eta)>1.3", theCat2Vars, TMVA::Types::kLikelihood,"Category_Likelihood_2","!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50");

   // ---- Now you can tell the factory to train, test, and evaluate the MVAs

   // Train MVAs using the set of training events
   factory->TrainAllMethods();

   // ---- Evaluate all MVAs using the set of test events
   factory->TestAllMethods();

   // ----- Evaluate and compare performance of all configured MVAs
   factory->EvaluateAllMethods();    

   // --------------------------------------------------------------
   
   // Save the output
   outputFile->Close();

   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVAClassificationCategory is done!" << std::endl;      

   // Clean up
   delete factory;

   // Launch the GUI for the root macros
   if (!gROOT->IsBatch()) TMVAGui( outfileName );
}
开发者ID:amarini,项目名称:pandolf,代码行数:101,代码来源:TMVAClassificationCategory.C

示例12: main


//.........这里部分代码省略.........
//   for (int iSample=0; iSample<numberOfSamples; iSample++){
//    int numEnt = treeJetLepVect[iSample]->GetEntries(Cut.c_str());
//    std::cout << " Sample = " << nameSample[iSample] << " ~ " << nameHumanReadable[iSample] << " --> " << numEnt << std::endl;
//    if (numEnt != 0) {
//     bool isSig = false;
//     for (std::vector<std::string>::const_iterator itSig = SignalName.begin(); itSig != SignalName.end(); itSig++){
//      if (nameHumanReadable[iSample] == *itSig) isSig = true;
//     }
//     if (isSig) {
//      factory->AddTree( treeJetLepVect[iSample], TString("Signal"), Normalization[iSample] ); //---> ci deve essere uno chiamato Signal!
//     }
//     else {
//      factory->AddTree( treeJetLepVect[iSample], TString(nameHumanReadable[iSample]), Normalization[iSample] );
//     }
//    }
//   }
//
//   for (int iSample=0; iSample<numberOfSamples; iSample++){
//    int numEnt = treeJetLepVect[iSample]->GetEntries(Cut.c_str());
//    std::cout << " Sample = " << nameSample[iSample] << " ~ " << nameHumanReadable[iSample] << " --> " << numEnt << std::endl;
//    if (numEnt != 0) {
//     bool isSig = false;
//     for (std::vector<std::string>::const_iterator itSig = SignalName.begin(); itSig != SignalName.end(); itSig++){
//      if (nameHumanReadable[iSample] == *itSig) isSig = true;
//     }
//     if (isSig) {
// //      factory->AddTree( treeJetLepVect[iSample], TString("Signal"), Normalization[iSample] ); //---> ci deve essere uno chiamato Signal!
//     }
//     else {
//      factory->AddTree( treeJetLepVect[iSample], TString(nameHumanReadable[iSample]), Normalization[iSample] );
//     }
//    }
//   }


    std::cerr << " AAAAAAAAAAAAAAAAAAAAAAAAAAAAA " << std::endl;

    TCut mycuts = Cut.c_str();

//   factory->SetWeightExpression( nameWeight.c_str() );
//   factory->SetBackgroundWeightExpression( nameWeight.c_str() );
//   factory->SetSignalWeightExpression    ( nameWeight.c_str() );

    std::cerr << " BBBBBBBBBBBBBBBBBBBBBBBBBBBBB " << std::endl;

    factory->PrepareTrainingAndTestTree( mycuts ,"SplitMode=Random:NormMode=None:!V");
//   factory->PrepareTrainingAndTestTree( "" ,"SplitMode=Random:NormMode=None:!V");

    std::cerr << " CCCCCCCCCCCCCCCCCCCCCCCCCCCCC " << std::endl;



    // gradient boosted decision trees
//   if (Use["BDTG"])    factory->BookMethod( TMVA::Types::kBDT, "BDTG", "!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.10:UseBaggedGrad:GradBaggingFraction=0.50:nCuts=20:NNodesMax=8");
    if (Use["BDTG"])    factory->BookMethod( TMVA::Types::kBDT, "BDTG", "!H:!V:NTrees=600:BoostType=Grad:Shrinkage=0.10:UseBaggedGrad:GradBaggingFraction=0.50:nCuts=20:NNodesMax=8");
    // neural network
    if (Use["MLP"])     factory->BookMethod( TMVA::Types::kMLP, "MLP", "!H:!V:NeuronType=tanh:NCycles=1000:HiddenLayers=N+5,5:TestRate=5:EstimatorType=MSE");
    // functional discriminant with GA minimizer
    if (Use["FDA_GA"])  factory->BookMethod( TMVA::Types::kFDA, "FDA_GA", "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=300:Cycles=3:Steps=20:Trim=True:SaveBestGen=1" );
    // PDE-Foam approach
    if (Use["PDEFoam"]) factory->BookMethod( TMVA::Types::kPDEFoam, "PDEFoam", "!H:!V:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Nmin=100:Kernel=None:Compress=T" );



    //==== Optimize parameters in MVA methods
//   factory->OptimizeAllMethods();
//   factory->OptimizeAllMethods("ROCIntegral","Scan");
    //==== Train MVAs using the set of training events ====
    factory->TrainAllMethods();

    //==== Evaluate all MVAs using the set of test events ====
    factory->TestAllMethods();

    //==== Evaluate and compare performance of all configured MVAs ====
    factory->EvaluateAllMethods();

    // --------------------------------------------------------------

    // Save the output
    outputFile->Close();

    std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
    std::cout << "==> TMVAnalysis is done!" << std::endl;

    delete factory;

    //==== change position of weights file
    std::string toDo;

    toDo = "rm -r Weights-MVA-MultiClass/weights_" + HiggsMass + "_testVariables";
    std::cerr << "toDo = " << toDo << std::endl;
    system (toDo.c_str());

    toDo = "mv weights Weights-MVA-MultiClass/weights_" + HiggsMass + "_testVariables";
    std::cerr << "toDo = " << toDo << std::endl;
    system (toDo.c_str());

    // Launch the GUI for the root macros
    //   if (!gROOT->IsBatch()) TMVAGui( outfileName );
}
开发者ID:ruphy,项目名称:AnalysisPackage_qqHWWlnulnu,代码行数:101,代码来源:MVATrainingMultiClass.cpp

示例13: TMVAClassification


//.........这里部分代码省略.........
   if (Use["FDA_MT"])
      factory->BookMethod( TMVA::Types::kFDA, "FDA_MT",
                           "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );

   if (Use["FDA_GAMT"])
      factory->BookMethod( TMVA::Types::kFDA, "FDA_GAMT",
                           "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );

   if (Use["FDA_MCMT"])
      factory->BookMethod( TMVA::Types::kFDA, "FDA_MCMT",
                           "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20" );

   // TMVA ANN: MLP (recommended ANN) -- all ANNs in TMVA are Multilayer Perceptrons
   if (Use["MLP"])
     // factory->BookMethod( TMVA::Types::kMLP, "MLP", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:!UseRegulator" );
     factory->BookMethod( TMVA::Types::kMLP, "MLP", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+8:TestRate=5:!UseRegulator" );

   if (Use["MLPBFGS"])
      factory->BookMethod( TMVA::Types::kMLP, "MLPBFGS", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:!UseRegulator" );

   if (Use["MLPBNN"])
      factory->BookMethod( TMVA::Types::kMLP, "MLPBNN", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator" ); // BFGS training with bayesian regulators

   // CF(Clermont-Ferrand)ANN
   if (Use["CFMlpANN"])
      factory->BookMethod( TMVA::Types::kCFMlpANN, "CFMlpANN", "!H:!V:NCycles=2000:HiddenLayers=N+1,N"  ); // n_cycles:#nodes:#nodes:...  

   // Tmlp(Root)ANN
   if (Use["TMlpANN"])
      factory->BookMethod( TMVA::Types::kTMlpANN, "TMlpANN", "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3"  ); // n_cycles:#nodes:#nodes:...

   // Support Vector Machine
   if (Use["SVM"])
      factory->BookMethod( TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" );

   // Boosted Decision Trees
   if (Use["BDTG"]) // Gradient Boost
      factory->BookMethod( TMVA::Types::kBDT, "BDTG",
                           "!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.10:UseBaggedGrad:GradBaggingFraction=0.5:nCuts=20:NNodesMax=5" );

   if (Use["BDT"])  // Adaptive Boost
      factory->BookMethod( TMVA::Types::kBDT, "BDT",
                           "!H:!V:NTrees=800:nEventsMin=50:MaxDepth=2:BoostType=AdaBoost:AdaBoostBeta=1:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning:NNodesMax=5" );


   if (Use["BDTB"]) // Bagging
      factory->BookMethod( TMVA::Types::kBDT, "BDTB",
                           "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" );

   if (Use["BDTD"]) // Decorrelation + Adaptive Boost
      factory->BookMethod( TMVA::Types::kBDT, "BDTD",
                           "!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning:VarTransform=Decorrelate" );

   if (Use["BDTF"])  // Allow Using Fisher discriminant in node splitting for (strong) linearly correlated variables
      factory->BookMethod( TMVA::Types::kBDT, "BDTMitFisher",
                           "!H:!V:NTrees=50:nEventsMin=150:UseFisherCuts:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" );

   // RuleFit -- TMVA implementation of Friedman's method
   if (Use["RuleFit"])
      factory->BookMethod( TMVA::Types::kRuleFit, "RuleFit",
                           "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02" );

   // For an example of the category classifier usage, see: TMVAClassificationCategory

   // --------------------------------------------------------------------------------------------------

   // ---- Now you can optimize the setting (configuration) of the MVAs using the set of training events

   // factory->OptimizeAllMethods("SigEffAt001","Scan");
   // factory->OptimizeAllMethods("ROCIntegral","GA");

   // --------------------------------------------------------------------------------------------------

   // ---- Now you can tell the factory to train, test, and evaluate the MVAs

   // Train MVAs using the set of training events
   std::cout << "Training all methods" << std::endl;
   factory->TrainAllMethods();

   // ---- Evaluate all MVAs using the set of test events
   std::cout << "Testing all methods" << std::endl;
   factory->TestAllMethods();

   // ----- Evaluate and compare performance of all configured MVAs
   std::cout << "Evaluating all methods" << std::endl;
   factory->EvaluateAllMethods();

   // --------------------------------------------------------------

   // Save the output
   outputFile->Close();

   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVAClassification is done!" << std::endl;

   delete factory;

   // Launch the GUI for the root macros
   if (!gROOT->IsBatch()) TMVAGui( outfileName );
}
开发者ID:Hosein47,项目名称:usercode,代码行数:101,代码来源:TMVAClassification.C

示例14: TrainRegressionFJ


//.........这里部分代码省略.........
    // Please lookup the various method configuration options in the corresponding cxx files, eg:
    // src/MethodCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
    // it is possible to preset ranges in the option string in which the cut optimisation should be done:
    // "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable

    // PDE - RS method
    if (Use["PDERS"])
        factory->BookMethod( TMVA::Types::kPDERS, "PDERS",
                             "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=40:NEventsMax=60:VarTransform=None" );
    // And the options strings for the MinMax and RMS methods, respectively:
    //      "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" );   
    //      "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" );   

    if (Use["PDEFoam"])
        factory->BookMethod( TMVA::Types::kPDEFoam, "PDEFoam",
                             "!H:!V:MultiTargetRegression=F:TargetSelection=Mpv:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Compress=T:Kernel=None:Nmin=10:VarTransform=None" );

    // K-Nearest Neighbour classifier (KNN)
    if (Use["KNN"])
        factory->BookMethod( TMVA::Types::kKNN, "KNN",
                             "nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" );

    // Linear discriminant
    if (Use["LD"])
        factory->BookMethod( TMVA::Types::kLD, "LD", 
                             "!H:!V:VarTransform=None" );

    // Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA)
    if (Use["FDA_MC"])
        factory->BookMethod( TMVA::Types::kFDA, "FDA_MC",
                             "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=MC:SampleSize=100000:Sigma=0.1:VarTransform=D" );

    if (Use["FDA_GA"]) // can also use Simulated Annealing (SA) algorithm (see Cuts_SA options) .. the formula of this example is good for parabolas
        factory->BookMethod( TMVA::Types::kFDA, "FDA_GA",
                             "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:PopSize=100:Cycles=3:Steps=30:Trim=True:SaveBestGen=1:VarTransform=Norm" );

    if (Use["FDA_MT"])
        factory->BookMethod( TMVA::Types::kFDA, "FDA_MT",
                             "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );

    if (Use["FDA_GAMT"])
        factory->BookMethod( TMVA::Types::kFDA, "FDA_GAMT",
                             "!H:!V:Formula=(0)+(1)*x0+(2)*x1:ParRanges=(-100,100);(-100,100);(-100,100):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );

    // Neural network (MLP)
    if (Use["MLP"])
        factory->BookMethod( TMVA::Types::kMLP, "MLP", 
                             "!H:!V:VarTransform=Norm:NeuronType=tanh:NCycles=20000:HiddenLayers=N+20:TestRate=6:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8:ConvergenceImprove=1e-6:ConvergenceTests=15:!UseRegulator" );

    // Support Vector Machine
    if (Use["SVM"])
        factory->BookMethod( TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" );

    // Boosted Decision Trees
    if (Use["BDT"])
        factory->BookMethod( TMVA::Types::kBDT, "BDT",
                             "!H:V:NTrees=100:nEventsMin=30:NodePurityLimit=0.5:BoostType=AdaBoostR2:SeparationType=RegressionVariance:nCuts=20:PruneMethod=CostComplexity:PruneStrength=30" );
//"!H:V:NTrees=60:nEventsMin=20:NodePurityLimit=0.5:BoostType=AdaBoostR2:SeparationType=RegressionVariance:nCuts=20:PruneMethod=CostComplexity:PruneStrength=30:DoBoostMonitor" );

    if (Use["BDT1"])
        factory->BookMethod( TMVA::Types::kBDT, "BDT1",
                             "!H:V:NTrees=100:nEventsMin=5:BoostType=AdaBoostR2:SeparationType=RegressionVariance:nCuts=20:PruneMethod=CostComplexity:PruneStrength=30" );

    if (Use["BDTG"])
        factory->BookMethod( TMVA::Types::kBDT, "BDTG",
                             "!H:V:NTrees=2000:BoostType=Grad:Shrinkage=0.10:UseBaggedGrad:GradBaggingFraction=0.7:nCuts=200:MaxDepth=3:NNodesMax=15" );

    if (Use["BDTG1"])
        factory->BookMethod( TMVA::Types::kBDT, "BDTG1",
                             "!H:V:NTrees=1000:BoostType=Grad:Shrinkage=0.10:UseBaggedGrad:GradBaggingFraction=0.5:nCuts=20:MaxDepth=3:NNodesMax=15" );

    //--------------------------------------------------------------------------
    // Train MVAs using the set of training events
    factory->TrainAllMethods();

    // --- Evaluate all MVAs using the set of test events
    factory->TestAllMethods();

    // --- Evaluate and compare performance of all configured MVAs
    factory->EvaluateAllMethods();

    //--------------------------------------------------------------------------
    // Save the output
    outputFile->Close();

    std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
    std::cout << "==> TMVARegression is done!" << std::endl;

    for (UInt_t i=0; i<files.size(); i++)
        files.at(i)->Close();

    delete outputFile;
    delete factory;

    // Launch the GUI for the root macros
    //gROOT->SetMacroPath( "$ROOTSYS/tmva/macros/" );
    //gROOT->Macro( "$ROOTSYS/tmva/macros/TMVAlogon.C" );
    //gROOT->LoadMacro( "$ROOTSYS/tmva/macros/TMVAGui.C" );
    //if (!gROOT->IsBatch()) TMVARegGui( outfileName );
}
开发者ID:degrutto,项目名称:VHbbUF,代码行数:101,代码来源:TrainRegressionFJ.C

示例15: testBDT


//.........这里部分代码省略.........
   
   TString outfileName( "bdtTMVA_FCNC_tZ.root" );
  TFile* outputFile = TFile::Open( outfileName, "RECREATE" );

  TMVA::Factory *factory = new TMVA::Factory( "doBDT_FCNC_tZ", outputFile,
                                               "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification" );


 
   // global event weights per tree (see below for setting event-wise weights)
   //Double_t signalWeight     = 0.003582;
   //Double_t backgroundWeight = 0.0269;
   
   Double_t signalWeight     = 1;
   Double_t backgroundWeight = 1;
   
   TFile *input_sig = TFile::Open( "proof.root" );
   TFile *input_wz = TFile::Open( "proof.root" );
   
   TTree *signal     = (TTree*)input_sig->Get("Ttree_FCNCkut");
   
   
   TTree *background_WZ = (TTree*)input_wz->Get("Ttree_WZ");
   /*TTree *background_ZZ = (TTree*)input_wz->Get("Ttree_ZZ");
   TTree *background_WW = (TTree*)input_wz->Get("Ttree_WW");
   
   TTree *background_TTbar  = (TTree*)input_wz->Get("Ttree_TTbar");
   TTree *background_Zjets  = (TTree*)input_wz->Get("Ttree_Zjets");
   TTree *background_Wjets  = (TTree*)input_wz->Get("Ttree_Wjets");
   TTree *background_TtW    = (TTree*)input_wz->Get("Ttree_TtW");
   TTree *background_TbartW = (TTree*)input_wz->Get("Ttree_TbartW");*/

   // You can add an arbitrary number of signal or background trees
   factory->AddSignalTree    ( signal,            signalWeight     );
   factory->AddBackgroundTree( background_WZ,     backgroundWeight );
   /*factory->AddBackgroundTree( background_ZZ,     backgroundWeight );
   factory->AddBackgroundTree( background_WW,     backgroundWeight );
   factory->AddBackgroundTree( background_TTbar,  backgroundWeight );
   factory->AddBackgroundTree( background_Zjets,  backgroundWeight );
   factory->AddBackgroundTree( background_Wjets,  backgroundWeight );
   factory->AddBackgroundTree( background_TtW,    backgroundWeight );
   factory->AddBackgroundTree( background_TbartW, backgroundWeight );*/
   
   
   factory->AddVariable("tree_topMass",    'F');
   factory->AddVariable("tree_deltaPhilb", 'F');
   factory->AddVariable("tree_asym",       'F');
   factory->AddVariable("tree_Zpt",        'F');
   
   
   
   
   
   
   
   
   
   // to set weights. The variable must exist in the tree
   //    for signal    : factory->SetSignalWeightExpression    ("weight1*weight2");
   //    for background: factory->SetBackgroundWeightExpression("weight1*weight2");
   
   
   // Apply additional cuts on the signal and background samples (can be different)
   TCut mycuts = ""; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
   TCut mycutb = ""; // for example: TCut mycutb = "abs(var1)<0.5";

   factory->PrepareTrainingAndTestTree( mycuts, mycutb,
                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );
   
   
   
   factory->BookMethod( TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=100:nEventsMin=100:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning:VarTransform=Decorrelate" );




   // Train MVAs using the set of training events
   factory->TrainAllMethods();

   // ---- Evaluate all MVAs using the set of test events
   factory->TestAllMethods();

   // ----- Evaluate and compare performance of all configured MVAs
   factory->EvaluateAllMethods();

   // --------------------------------------------------------------

   // Save the output
   outputFile->Close();

   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVAClassification is done!" << std::endl;

   delete factory;

   // Launch the GUI for the root macros
   if (!gROOT->IsBatch()) TMVAGui( outfileName );


}
开发者ID:IPHC,项目名称:FrameworkLegacy,代码行数:101,代码来源:Test.C


注:本文中的tmva::Factory::EvaluateAllMethods方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。