当前位置: 首页>>代码示例>>C++>>正文


C++ Factory::SetBackgroundWeightExpression方法代码示例

本文整理汇总了C++中tmva::Factory::SetBackgroundWeightExpression方法的典型用法代码示例。如果您正苦于以下问题:C++ Factory::SetBackgroundWeightExpression方法的具体用法?C++ Factory::SetBackgroundWeightExpression怎么用?C++ Factory::SetBackgroundWeightExpression使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tmva::Factory的用法示例。


在下文中一共展示了Factory::SetBackgroundWeightExpression方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: TMVAtest

void TMVAtest(){
  //gSystem->Load("../lib/slc5_amd64_gcc462/libTAMUWWMEPATNtuple.so");
  gSystem->Load("libPhysics");
  //gSystem->Load("EvtTreeForAlexx_h.so");
  gSystem->Load("libTMVA.1");
  gSystem->Load("AutoDict_vector_TLorentzVector__cxx.so");
  TMVA::Tools::Instance();
  TFile* outputFile = TFile::Open("TMVA1.root", "RECREATE");
  TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification",outputFile,"V=true:Color:DrawProgressBar");// ":Transformations=I;D;P;G,D" );
  TFile* signal = TFile::Open("/uscms_data/d2/aperloff/Spring12ME7TeV/MEResults/microNtuples_oldStructure/microWW_EPDv01.root");
  TFile* bkg = TFile::Open("/uscms_data/d2/aperloff/Spring12ME7TeV/MEResults/microNtuples_oldStructure/microWJets_EPDv01.root");

  TTree* stree = (TTree*)signal->Get("METree");
  TTree* btree = (TTree*)bkg->Get("METree");
  factory->AddSignalTree(stree,1.0);
  factory->AddBackgroundTree(btree,1.0);


  factory->SetSignalWeightExpression("1.0");
  factory->SetBackgroundWeightExpression("1.0");
  factory->AddVariable("tEventProb[0]");
  factory->AddVariable("tEventProb[1]");
  factory->AddVariable("tEventProb[2]");

  //factory->AddVariable("tEventProb0 := tEventProb[0]",'F');
  //factory->AddVariable("tEventProb1 := tEventProb[1]",'F');
  //factory->AddVariable("tEventProb2 := tEventProb[2]",'F');
  TCut test("Entry$>-2 && jLV[1].Pt()>30");
  TCut mycuts (test);
  factory->PrepareTrainingAndTestTree(mycuts,mycuts,"nTrain_Signal=0:nTrain_Background=0:nTest_Signal=0:nTest_Background=0:SplitMode=Random:NormMode=None:V=true:VerboseLevel=DEBUG");
  factory->BookMethod( TMVA::Types::kBDT, "BDT","!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" );
  factory->TrainAllMethods();
  factory->TestAllMethods();
  factory->EvaluateAllMethods();
  outputFile->Close(); 

}
开发者ID:aperloff,项目名称:TAMUWW,代码行数:37,代码来源:TMVAtest.C

示例2: Classification

void Classification()
{
   TMVA::Tools::Instance();
   TMVA::PyMethodBase::PyInitialize();

   TString outfileName("TMVA.root");
   TFile *outputFile = TFile::Open(outfileName, "RECREATE");

   TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,
         "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification");


   factory->AddVariable("myvar1 := var1+var2", 'F');
   factory->AddVariable("myvar2 := var1-var2", "Expression 2", "", 'F');
   factory->AddVariable("var3",                "Variable 3", "units", 'F');
   factory->AddVariable("var4",                "Variable 4", "units", 'F');


   factory->AddSpectator("spec1 := var1*2",  "Spectator 1", "units", 'F');
   factory->AddSpectator("spec2 := var1*3",  "Spectator 2", "units", 'F');


   TString fname = "./tmva_class_example.root";

   if (gSystem->AccessPathName(fname))    // file does not exist in local directory
      gSystem->Exec("curl -O http://root.cern.ch/files/tmva_class_example.root");

   TFile *input = TFile::Open(fname);

   std::cout << "--- TMVAClassification       : Using input file: " << input->GetName() << std::endl;

   // --- Register the training and test trees

   TTree *tsignal     = (TTree *)input->Get("TreeS");
   TTree *tbackground = (TTree *)input->Get("TreeB");

   // global event weights per tree (see below for setting event-wise weights)
   Double_t signalWeight     = 1.0;
   Double_t backgroundWeight = 1.0;

   // You can add an arbitrary number of signal or background trees
   factory->AddSignalTree(tsignal,     signalWeight);
   factory->AddBackgroundTree(tbackground, backgroundWeight);


   // Set individual event weights (the variables must exist in the original TTree)
   factory->SetBackgroundWeightExpression("weight");


   // Apply additional cuts on the signal and background samples (can be different)
   TCut mycuts = ""; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
   TCut mycutb = ""; // for example: TCut mycutb = "abs(var1)<0.5";

   // Tell the factory how to use the training and testing events
   factory->PrepareTrainingAndTestTree(mycuts, mycutb,
                                       "nTrain_Signal=0:nTrain_Background=0:nTest_Signal=0:nTest_Background=0:SplitMode=Random:NormMode=NumEvents:!V");


   ///////////////////
   //Booking         //
   ///////////////////
   // Boosted Decision Trees

   //PyMVA methods
   factory->BookMethod(TMVA::Types::kPyRandomForest, "PyRandomForest",
                       "!V:NEstimators=150:Criterion=gini:MaxFeatures=auto:MaxDepth=3:MinSamplesLeaf=1:MinWeightFractionLeaf=0:Bootstrap=kTRUE");
   factory->BookMethod(TMVA::Types::kPyAdaBoost, "PyAdaBoost",
                       "!V:BaseEstimator=None:NEstimators=100:LearningRate=1:Algorithm=SAMME.R:RandomState=None");
   factory->BookMethod(TMVA::Types::kPyGTB, "PyGTB",
                       "!V:NEstimators=150:Loss=deviance:LearningRate=0.1:Subsample=1:MaxDepth=6:MaxFeatures='auto'");


   // Train MVAs using the set of training events
   factory->TrainAllMethods();

   // ---- Evaluate all MVAs using the set of test events
   factory->TestAllMethods();

   // ----- Evaluate and compare performance of all configured MVAs
   factory->EvaluateAllMethods();
   // --------------------------------------------------------------

   // Save the output
   outputFile->Close();

   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVAClassification is done!" << std::endl;

}
开发者ID:MycrofD,项目名称:root,代码行数:89,代码来源:Classification.C

示例3: TMVAClassification


//.........这里部分代码省略.........
   TTree *  Cd116_K40_tree         = (TTree*) input->Get("Cd116_K40_tree"      ) ; Double_t Cd116_K40_weight         = 8.9841+25.8272    ; if( Cd116_K40_tree      -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( Cd116_K40_tree         , Cd116_K40_weight         ); };
   TTree *  Cd116_Pa234m_tree      = (TTree*) input->Get("Cd116_Pa234m_tree"   ) ; Double_t Cd116_Pa234m_weight      = 27.9307+72.4667   ; if( Cd116_Pa234m_tree   -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( Cd116_Pa234m_tree      , Cd116_Pa234m_weight      ); };
   TTree *  SFoil_Bi210_tree       = (TTree*) input->Get("SFoil_Bi210_tree"    ) ; Double_t SFoil_Bi210_weight       = 0+23.2438         ; if( SFoil_Bi210_tree    -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( SFoil_Bi210_tree       , SFoil_Bi210_weight       ); };
   TTree *  SWire_Bi210_tree       = (TTree*) input->Get("SWire_Bi210_tree"    ) ; Double_t SWire_Bi210_weight       = 0.136147+0.624187 ; if( SWire_Bi210_tree    -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( SWire_Bi210_tree       , SWire_Bi210_weight       ); };
   TTree *  SScin_Bi210_tree       = (TTree*) input->Get("SScin_Bi210_tree"    ) ; Double_t SScin_Bi210_weight       = 1.75641           ; if( SScin_Bi210_tree    -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( SScin_Bi210_tree       , SScin_Bi210_weight       ); };
   TTree *  SScin_Bi214_tree       = (TTree*) input->Get("SScin_Bi214_tree"    ) ; Double_t SScin_Bi214_weight       = 0.0510754         ; if( SScin_Bi214_tree    -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( SScin_Bi214_tree       , SScin_Bi214_weight       ); };
   TTree *  SScin_Pb214_tree       = (TTree*) input->Get("SScin_Pb214_tree"    ) ; Double_t SScin_Pb214_weight       = 0                 ; if( SScin_Pb214_tree    -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( SScin_Pb214_tree       , SScin_Pb214_weight       ); };
   TTree *  SWire_Tl208_tree       = (TTree*) input->Get("SWire_Tl208_tree"    ) ; Double_t SWire_Tl208_weight       = 0.217623+1.07641  ; if( SWire_Tl208_tree    -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( SWire_Tl208_tree       , SWire_Tl208_weight       ); };
   TTree *  SWire_Bi214_P1_tree    = (TTree*) input->Get("SWire_Bi214_tree"    ) ; Double_t SWire_Bi214_weight       = 21.4188+17.8236   ; if( SWire_Bi214_tree    -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( SWire_Bi214_tree       , SWire_Bi214_weight       ); };
   TTree *  SFoil_Bi214_tree       = (TTree*) input->Get("SFoil_Bi214_tree"    ) ; Double_t SFoil_Bi214_weight       = 5.83533+2.80427   ; if( SFoil_Bi214_tree    -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( SFoil_Bi214_tree       , SFoil_Bi214_weight       ); };
   TTree *  SWire_Pb214_tree       = (TTree*) input->Get("SWire_Pb214_tree"    ) ; Double_t SWire_Pb214_weight       = 0.458486+0.649167 ; if( SWire_Pb214_tree    -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( SWire_Pb214_tree       , SWire_Pb214_weight       ); };
   TTree *  SFoil_Pb214_tree       = (TTree*) input->Get("SFoil_Pb214_tree"    ) ; Double_t SFoil_Pb214_weight       = 0.218761+0.195287 ; if( SFoil_Pb214_tree    -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( SFoil_Pb214_tree       , SFoil_Pb214_weight       ); };
   TTree *  FeShield_Bi214_tree    = (TTree*) input->Get("FeShield_Bi214_tree" ) ; Double_t FeShield_Bi214_weight    = 50.7021           ; if( FeShield_Bi214_tree -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( FeShield_Bi214_tree    , FeShield_Bi214_weight    ); };
   TTree *  FeShield_Tl208_tree    = (TTree*) input->Get("FeShield_Tl208_tree" ) ; Double_t FeShield_Tl208_weight    = 0.859465          ; if( FeShield_Tl208_tree -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( FeShield_Tl208_tree    , FeShield_Tl208_weight    ); };
   TTree *  FeShield_Ac228_tree    = (TTree*) input->Get("FeShield_Ac228_tree" ) ; Double_t FeShield_Ac228_weight    = 0.126868          ; if( FeShield_Ac228_tree -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( FeShield_Ac228_tree    , FeShield_Ac228_weight    ); };
   TTree *  CuTower_Co60_tree      = (TTree*) input->Get("CuTower_Co60_tree"   ) ; Double_t CuTower_Co60_weight      = 3.9407            ; if( CuTower_Co60_tree   -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( CuTower_Co60_tree      , CuTower_Co60_weight      ); };
   TTree *  Air_Bi214_P1_tree      = (TTree*) input->Get("Air_Bi214_tree"      ) ; Double_t Air_Bi214_P1_weight      = 4.19744           ; if( Air_Bi214_P1_tree   -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( Air_Bi214_P1_tree      , Air_Bi214_P1_weight      ); };
   TTree *  Air_Tl208_P1_tree      = (TTree*) input->Get("Air_Tl208_tree"      ) ; Double_t Air_Tl208_P1_weight      = 0                 ; if( Air_Tl208_P1_tree   -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( Air_Tl208_P1_tree      , Air_Tl208_P1_weight      ); };
   TTree *  PMT_Bi214_tree         = (TTree*) input->Get("PMT_Bi214_tree"      ) ; Double_t PMT_Bi214_weight         = 27.9661           ; if( PMT_Bi214_tree      -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( PMT_Bi214_tree         , PMT_Bi214_weight         ); };
   TTree *  PMT_Tl208_tree         = (TTree*) input->Get("PMT_Tl208_tree"      ) ; Double_t PMT_Tl208_weight         = 22.923            ; if( PMT_Tl208_tree      -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( PMT_Tl208_tree         , PMT_Tl208_weight         ); };
   TTree *  PMT_Ac228_tree         = (TTree*) input->Get("PMT_Ac228_tree"      ) ; Double_t PMT_Ac228_weight         = 3.60712           ; if( PMT_Ac228_tree      -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( PMT_Ac228_tree         , PMT_Ac228_weight         ); };
   TTree *  PMT_K40_tree           = (TTree*) input->Get("PMT_K40_tree"        ) ; Double_t PMT_K40_weight           = 16.813            ; if( PMT_K40_tree        -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( PMT_K40_tree           , PMT_K40_weight           ); };
   TTree *  ScintInn_K40_tree      = (TTree*) input->Get("ScintInn_K40_tree"   ) ; Double_t ScintInn_K40_weight      = 0.333988          ; if( ScintInn_K40_tree   -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( ScintInn_K40_tree      , ScintInn_K40_weight      ); };
   TTree *  ScintOut_K40_tree      = (TTree*) input->Get("ScintOut_K40_tree"   ) ; Double_t ScintOut_K40_weight      = 0.601178          ; if( ScintOut_K40_tree   -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( ScintOut_K40_tree      , ScintOut_K40_weight      ); };
   TTree *  ScintPet_K40_tree      = (TTree*) input->Get("ScintPet_K40_tree"   ) ; Double_t ScintPet_K40_weight      = 1.00195           ; if( ScintPet_K40_tree   -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( ScintPet_K40_tree      , ScintPet_K40_weight      ); };
   TTree *  MuMetal_Pa234m_tree    = (TTree*) input->Get("MuMetal_Pa234m_tree" ) ; Double_t MuMetal_Pa234m_weight    = 0.739038          ; if( MuMetal_Pa234m_tree -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( MuMetal_Pa234m_tree    , MuMetal_Pa234m_weight    ); };
   TTree *  Cd116_2b2n_m14_tree    = (TTree*) input->Get("Cd116_2b2n_m14_tree" ) ; Double_t Cd116_2b2n_m14_weight    = 4977.55           ; if( Cd116_2b2n_m14_tree -> GetEntriesFast() > 0. ) {factory->AddBackgroundTree( Cd116_2b2n_m14_tree    , Cd116_2b2n_m14_weight    ); };

   // --- end of tree registration 

   // Set individual event weights (the variables must exist in the original TTree)
   //    for signal    : factory->SetSignalWeightExpression    ("weight1*weight2");
   //    for background: factory->SetBackgroundWeightExpression("weight1*weight2");
   factory->SetBackgroundWeightExpression( "weight" );

   // Apply additional cuts on the signal and background samples (can be different)
	
	// Apply cut on charge
	//TCut mycuts = "min_el_sign < 0 && max_el_sign < 0.";
	//TCut mycutb = "min_el_sign < 0 && max_el_sign < 0.";

	// Apply cut on vertex
	//TCut mycuts = "((max_vertex_x - min_vertex_x)**2 + (max_vertex_y - min_vertex_y)**2 <= 4**2)&&((max_vertex_z-min_vertex_z)**2<8**2)"; 
	//TCut mycutb = "((max_vertex_x - min_vertex_x)**2 + (max_vertex_y - min_vertex_y)**2 <= 4**2)&&((max_vertex_z-min_vertex_z)**2<8**2)"; 

	TCut mycuts = ""; 
	TCut mycutb = "";

   // Tell the factory how to use the training and testing events
   //
   // If no numbers of events are given, half of the events in the tree are used 
   // for training, and the other half for testing:
   //    factory->PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" );
   // To also specify the number of testing events, use:
   //    factory->PrepareTrainingAndTestTree( mycut,
   //                                         "NSigTrain=3000:NBkgTrain=3000:NSigTest=3000:NBkgTest=3000:SplitMode=Random:!V" );
   
   factory->PrepareTrainingAndTestTree( mycuts, mycutb,
                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );

   // ---- Book MVA methods
   //
   // Please lookup the various method configuration options in the corresponding cxx files, eg:
   // src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
   // it is possible to preset ranges in the option string in which the cut optimisation should be done:
   // "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable
开发者ID:remotain,项目名称:NEMO3Ana,代码行数:67,代码来源:TMVAClassification.C

示例4: main

int main(){
  TMVA::Tools::Instance();
  std::cout<<"Hello world"<<std::endl;

  TFile* OutputFile = TFile::Open("Outputfile.root","RECREATE");

  TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", OutputFile,
					      "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification" );

  std::vector<VMVariable*> Variables;
  MVariable* Var3= new MVariable("var3",F,none);
  MVariable* Var4 = new MVariable("var4",F,none);
  Variables.push_back(Var3);
  Variables.push_back(Var4);
  MVariable* Var1 = new MVariable("var1",F,none);
  MVariable* Var2 = new MVariable("var2",F,none);

  MultiVariable* MyVar1 = new MultiVariable("Var1+Var2",sum);
  MyVar1->AddVariable(Var1);
  MyVar1->AddVariable(Var2);
  Variables.push_back(MyVar1);

  MultiVariable* MyVar2 = new MultiVariable("Minus",subtract);
  MyVar2->AddVariable(Var1);
  MyVar2->AddVariable(Var2);
  Variables.push_back(MyVar2);
  std::string InputName= "./tmva_class_exampleD.root";
  
  TFile *input = TFile::Open("./tmva_class_exampleD.root" );
  
  TTree *signal = (TTree*)input->Get("TreeS");
  TTree *background=(TTree*)input->Get("TreeB");

  Double_t signalWeight     = 1.0;
  Double_t backgroundWeight = 1.0;

  factory->AddSignalTree    ( signal,     signalWeight     );
  factory->AddBackgroundTree( background, backgroundWeight );

  for(auto v:Variables){
    factory->AddVariable(v->GetFactoryName(),v->GetType());
  }
  
  factory->SetBackgroundWeightExpression( "weight" );
  
  TCut mycuts = "";
  TCut mycutb = "";
  
  factory->PrepareTrainingAndTestTree( mycuts, mycutb,
				       "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );
  
  std::vector<MClassifier*> Classifiers;
  
  Classifiers.push_back(new MClassifier(TMVA::Types::kBDT, "BDT",
					"!H:!V:NTrees=850:MinNodeSize=2.5%:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:UseBaggedBoost:BaggedSampleFraction=0.5:SeparationType=GiniIndex:nCuts=20"));
  
  for(auto C:Classifiers){
    if(!(C->AddMethodToFactory(factory))){
      std::cout<<"Booking classifier failed"<<std::endl;
      return 1;
    }
  }

  factory->TrainAllMethods();
  
  factory->TestAllMethods();
  
  factory->EvaluateAllMethods();
  
  OutputFile->Close();
  
  delete factory;
  
  TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" );    
  
  for(auto v: Variables){
    reader->AddVariable(v->GetFactoryName(),v->GetReaderAddress());
  }
  
  for(auto C:Classifiers){
    if(!(C->AddMethodToReader(reader,"./weights/","TMVAClassification"))){
      std::cout<<"Failed adding classifer to reader"<<std::endl;
      return 1;
    }
  }

  TFile* Input =  TFile::Open("./tmva_class_exampleD.root");
  TTree* TreeToEvaluate= (TTree*)Input->Get("TreeS");
  
  TFile* AppliedFile =  new TFile("AppliedFile.root","RECREATE");
  TTree* AppliedTree=TreeToEvaluate->CloneTree(0);
  
  for(auto C:Classifiers){
    if(!(C->MakeBranch(AppliedTree)))return 1;
  }
  
  for(auto Var:Variables){
    if(!(Var->SetBA(TreeToEvaluate))){
      std::cout<<"Problem Setting Branch addresses"<<std::endl;
      return 1;
//.........这里部分代码省略.........
开发者ID:Williams224,项目名称:Analysis2,代码行数:101,代码来源:TMVAValidation.cpp

示例5: TMVA_stop


//.........这里部分代码省略.........
   //
   //     // --- begin ----------------------------------------------------------
   //     std::vector<Double_t> vars( 4 ); // vector has size of number of input variables
   //     Float_t  treevars[4], weight;
   //     
   //     // Signal
   //     for (UInt_t ivar=0; ivar<4; ivar++) signal->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) );
   //     for (UInt_t i=0; i<signal->GetEntries(); i++) {
   //        signal->GetEntry(i);
   //        for (UInt_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar];
   //        // add training and test events; here: first half is training, second is testing
   //        // note that the weight can also be event-wise
   //        if (i < signal->GetEntries()/2.0) factory->AddSignalTrainingEvent( vars, signalWeight );
   //        else                              factory->AddSignalTestEvent    ( vars, signalWeight );
   //     }
   //   
   //     // Background (has event weights)
   //     background->SetBranchAddress( "weight", &weight );
   //     for (UInt_t ivar=0; ivar<4; ivar++) background->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) );
   //     for (UInt_t i=0; i<background->GetEntries(); i++) {
   //        background->GetEntry(i);
   //        for (UInt_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar];
   //        // add training and test events; here: first half is training, second is testing
   //        // note that the weight can also be event-wise
   //        if (i < background->GetEntries()/2) factory->AddBackgroundTrainingEvent( vars, backgroundWeight*weight );
   //        else                                factory->AddBackgroundTestEvent    ( vars, backgroundWeight*weight );
   //     }
   //      // --- end ------------------------------------------------------------
   //
   // --- end of tree registration 
   
   // Set individual event weights (the variables must exist in the original TTree)
   factory->SetSignalWeightExpression    ("mini_weight");
   factory->SetBackgroundWeightExpression("mini_weight");

   /*
   if( doMultipleOutputs ){
     multifactory->AddTree(signal,"Signal");
     multifactory->SetSignalWeightExpression    ("event_scale1fb");
     multifactory->SetBackgroundWeightExpression("event_scale1fb");
     multifactory->SetWeightExpression("event_scale1fb");
     
     if( includeBkg["ww"] ){
       TTree* ww = (TTree*) chww;
       multifactory->AddTree(ww,"WW");
       cout << "Added WW to multi-MVA" << endl;
     }
     if( includeBkg["wjets"] ){
       TTree* wjets = (TTree*) chwjets;
       multifactory->AddTree(wjets,"WJets");
       cout << "Added W+jets to multi-MVA" << endl;
     }
     if( includeBkg["tt"] ){
       TTree* tt = (TTree*) chtt;
       multifactory->AddTree(tt,"tt");
       cout << "Added ttbar multi-MVA" << endl;
     }
   }
   */

   // Apply additional cuts on the signal and background samples (can be different)
   TCut mycuts = sel0; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
   TCut mycutb = sel0; // for example: TCut mycutb = "abs(var1)<0.5";

   // Tell the factory how to use the training and testing events
   //
开发者ID:hooberman,项目名称:UserCode,代码行数:67,代码来源:TMVA_stop.C

示例6: main


//.........这里部分代码省略.........
  for (unsigned i = 0; i < bkgfiles.size(); ++i) {
    std::string filename = (bkgfiles[i]+".root");
    TFile * tmp = new TFile((folder+"/"+filename).c_str());
    if (!tmp) {
      std::cerr << "Warning, file " << filename << " could not be opened." << std::endl;
    } else {
      tfiles[bkgfiles[i]] = tmp;      
    }
  }
  TTree *background[bkgfiles.size()];

  //signal
  std::map<std::string, TFile *> sfiles;
  for (unsigned i = 0; i < sigfiles.size(); ++i) {
    std::string filename = (sigfiles[i]+".root");
    TFile * tmp = new TFile((folder+"/"+filename).c_str());
    if (!tmp) {
      std::cerr << "Warning, file " << filename << " could not be opened." << std::endl;
    } else {
      sfiles[sigfiles[i]] = tmp;      
    }
  }
  TTree *signal[sigfiles.size()];

  for (unsigned i = 0; i < bkgfiles.size(); ++i) {

    std::string f = bkgfiles[i];
    if (tfiles[f]){
      background[i] = (TTree*)tfiles[f]->Get("TmvaInputTree");
      //if (f.find("QCD-Pt")!=f.npos){
      //}
      Double_t backgroundWeight = 1.0;
      factory->AddBackgroundTree(background[i],backgroundWeight);
      factory->SetBackgroundWeightExpression("total_weight");

    }//if file exist
    else {
      std::cout << " Cannot find background file " << f << std::endl;
    }
  }//loop on files

  for (unsigned i = 0; i < sigfiles.size(); ++i) {

    std::string f = sigfiles[i];
    if (sfiles[f]){
      signal[i] = (TTree*)sfiles[f]->Get("TmvaInputTree");
      //if (f.find("QCD-Pt")!=f.npos){
      //}
      Double_t signalWeight = 1.0;
      factory->AddSignalTree(signal[i],signalWeight);
      factory->SetSignalWeightExpression("total_weight");

    }//if file exist
    else {
      std::cout << " Cannot find signal file " << f << std::endl;
    }
  }//loop on files


   // Apply additional cuts on the signal and background samples (can be different)
  TCut mycuts = "";//dijet_deta>3.8 && dijet_M > 1100 && met > 100 && met_significance>5";
  TCut mycutb = "";//dijet_deta>3.8 && dijet_M > 1100 && met > 100 && met_significance>5";

  factory->PrepareTrainingAndTestTree( mycuts, mycutb,
				       "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );
  
开发者ID:achilleasatha,项目名称:ICHiggsTauTau,代码行数:66,代码来源:RunTmva.cpp

示例7: tmvaClassifier


//.........这里部分代码省略.........
   //     // --- begin ----------------------------------------------------------
   //     std::vector<Double_t> vars( 4 ); // vector has size of number of input variables
   //     Float_t  treevars[4], weight;
   //     
   //     // Signal
   //     for (UInt_t ivar=0; ivar<4; ivar++) signal->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) );
   //     for (UInt_t i=0; i<signal->GetEntries(); i++) {
   //        signal->GetEntry(i);
   //        for (UInt_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar];
   //        // add training and test events; here: first half is training, second is testing
   //        // note that the weight can also be event-wise
   //        if (i < signal->GetEntries()/2.0) factory->AddSignalTrainingEvent( vars, signalWeight );
   //        else                              factory->AddSignalTestEvent    ( vars, signalWeight );
   //     }
   //   
   //     // Background (has event weights)
   //     background->SetBranchAddress( "weight", &weight );
   //     for (UInt_t ivar=0; ivar<4; ivar++) background->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) );
   //     for (UInt_t i=0; i<background->GetEntries(); i++) {
   //        background->GetEntry(i);
   //        for (UInt_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar];
   //        // add training and test events; here: first half is training, second is testing
   //        // note that the weight can also be event-wise
   //        if (i < background->GetEntries()/2) factory->AddBackgroundTrainingEvent( vars, backgroundWeight*weight );
   //        else                                factory->AddBackgroundTestEvent    ( vars, backgroundWeight*weight );
   //     }
         // --- end ------------------------------------------------------------
   //
   // --- end of tree registration 

   // Set individual event weights (the variables must exist in the original TTree)
   //    for signal    : factory->SetSignalWeightExpression    ("weight1*weight2");
   //    for background: factory->SetBackgroundWeightExpression("weight1*weight2");
   factory->SetBackgroundWeightExpression( "weight" );

   // Apply additional cuts on the signal and background samples (can be different)
   TCut mycuts = ""; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
   TCut mycutb = ""; // for example: TCut mycutb = "abs(var1)<0.5";

   // Tell the factory how to use the training and testing events
   //
   // If no numbers of events are given, half of the events in the tree are used 
   // for training, and the other half for testing:
   //    factory->PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" );
   // To also specify the number of testing events, use:
   //    factory->PrepareTrainingAndTestTree( mycut,
   //                                         "NSigTrain=3000:NBkgTrain=3000:NSigTest=3000:NBkgTest=3000:SplitMode=Random:!V" );
   factory->PrepareTrainingAndTestTree( mycuts, mycutb,
                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );

   // ---- Book MVA methods
   //
   // Please lookup the various method configuration options in the corresponding cxx files, eg:
   // src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
   // it is possible to preset ranges in the option string in which the cut optimisation should be done:
   // "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable

   // Cut optimisation
   if (Use["Cuts"])
      factory->BookMethod( TMVA::Types::kCuts, "Cuts",
                           "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart" );

   if (Use["CutsD"])
      factory->BookMethod( TMVA::Types::kCuts, "CutsD",
                           "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate" );
开发者ID:bajarang,项目名称:VJets_TreeMaker5311,代码行数:66,代码来源:tmvaClassifier.C

示例8: TMVAClassification


//.........这里部分代码省略.........
      //      variable definition, but simply compute the expression before adding the event
      //
      //    // --- begin ----------------------------------------------------------
      //    std::vector<Double_t> vars( 4 ); // vector has size of number of input variables
      //    Float_t  treevars[4];
      //    for (Int_t ivar=0; ivar<4; ivar++) signal->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) );
      //    for (Int_t i=0; i<signal->GetEntries(); i++) {
      //       signal->GetEntry(i);
      //       for (Int_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar];
      //       // add training and test events; here: first half is training, second is testing
      //       // note that the weight can also be event-wise
      //       if (i < signal->GetEntries()/2) factory->AddSignalTrainingEvent( vars, signalWeight );
      //       else                            factory->AddSignalTestEvent    ( vars, signalWeight );
      //    }
      //
      //    for (Int_t ivar=0; ivar<4; ivar++) background->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) );
      //    for (Int_t i=0; i<background->GetEntries(); i++) {
      //       background->GetEntry(i);
      //       for (Int_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar];
      //       // add training and test events; here: first half is training, second is testing
      //       // note that the weight can also be event-wise
      //       if (i < background->GetEntries()/2) factory->AddBackgroundTrainingEvent( vars, backgroundWeight );
      //       else                                factory->AddBackgroundTestEvent    ( vars, backgroundWeight );
      //    }
      //    // --- end ------------------------------------------------------------
      //
      // ====== end of register trees ==============================================
   }

   // This would set individual event weights (the variables defined in the
   // expression need to exist in the original TTree)
   //    for signal    : factory->SetSignalWeightExpression("weight1*weight2");
   //    for background: factory->SetBackgroundWeightExpression("weight1*weight2");
   factory->SetBackgroundWeightExpression("Eweight*XS*BR*LUM*(1/NGE)*(B2/B3)*CUT");
   factory->SetSignalWeightExpression("Eweight*XS*BR*LUM*(1/NGE)*(B2/B3)*CUT");

   // Apply additional cuts on the signal and background samples (can be different)
TCut mycuts = "(CUT>2)";
TCut mycutb = "(CUT>2)";

   // tell the factory to use all remaining events in the trees after training for testing:

 factory->PrepareTrainingAndTestTree( mycuts, "SplitMode=random:!V" );
//                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );

   // If no numbers of events are given, half of the events in the tree are used for training, and
   // the other half for testing:
   //    factory->PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" );
   // To also specify the number of testing events, use:
   //    factory->PrepareTrainingAndTestTree( mycut,
   //                                         "NSigTrain=3000:NBkgTrain=3000:NSigTest=3000:NBkgTest=3000:SplitMode=Random:!V" );

   // ---- Book MVA methods
   //
   // please lookup the various method configuration options in the corresponding cxx files, eg:
   // src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
   // it is possible to preset ranges in the option string in which the cut optimisation should be done:
   // "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable

   // Cut optimisation
   if (Use["Cuts"])
      factory->BookMethod( TMVA::Types::kCuts, "Cuts",
                           "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart" );

   if (Use["CutsD"])
      factory->BookMethod( TMVA::Types::kCuts, "CutsD",
开发者ID:beknapp,项目名称:usercode,代码行数:67,代码来源:TMVAClassification_ZH145.C

示例9: Reg

void Reg(){
  
  TMVA::Tools::Instance();
  std::cout << "==> Start TMVARegression" << std::endl;
    
  ifstream myfile; 
  myfile.open("99per.txt");


  ostringstream xcS,xcH,xcP,xcC,xcN;  
  double xS,xH,xC,xN,xP;

  if(myfile.is_open()){
    while(!myfile.eof()){
      myfile>>xS>>xH>>xC>>xN>>xP;
    }
  }

  xcS<<xS;
  xcH<<xH;
  xcC<<xC;
  xcN<<xN;
  xcP<<xP;

  //Output file 
  TString outfileName( "Ex1out_FullW_def.root" );
  TFile* outputFile = TFile::Open( outfileName, "RECREATE" );
  
  //Declaring the factory
  TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile, 
					      "!V:!Silent:Color:DrawProgressBar" );
  //Declaring Input Varibles 
  factory->AddVariable( "Sieie",'F');
  factory->AddVariable( "ToE", 'F' );
  factory->AddVariable( "isoC",'F' );
  factory->AddVariable( "isoN",'F' );
  factory->AddVariable( "isoP",'F' );
  
  TString fname = "../../CutTMVATrees_Barrel.root";
  input = TFile::Open( fname );
  
  // --- Register the regression tree
  TTree *signal = (TTree*)input->Get("t_S");
  TTree *background = (TTree*)input->Get("t_B");
  
  //Just Some more settings
   Double_t signalWeight      = 1.0; 
   Double_t backgroundWeight  = 1.0; 

   // You can add an arbitrary number of regression trees
   factory->AddSignalTree( signal, signalWeight );
   factory->AddBackgroundTree( background , backgroundWeight );
 
   TCut mycuts ="";
   TCut mycutb ="";

   // factory->PrepareTrainingAndTestTree(mycuts,mycutb,"nTrain_Signal=9000:nTrain_Background=9000:nTest_Signal=10000:nTest_Background=10000");

   factory->SetBackgroundWeightExpression("weightPT*weightXS");
   factory->SetSignalWeightExpression("weightPT*weightXS");

   TString methodName = "Cuts_FullsampleW_def";
   TString methodOptions ="!H:!V:FitMethod=GA:EffMethod=EffSEl"; 
   methodOptions +=":VarProp[0]=FMin:VarProp[1]=FMin:VarProp[2]=FMin:VarProp[3]=FMin:VarProp[4]=FMin";
  
   methodOptions +=":CutRangeMax[0]="+xcS.str(); 
   methodOptions +=":CutRangeMax[1]="+xcH.str();
   methodOptions +=":CutRangeMax[2]="+xcC.str();
   methodOptions +=":CutRangeMax[3]="+xcN.str();
   methodOptions +=":CutRangeMax[4]="+xcP.str();

   //************
   factory->BookMethod(TMVA::Types::kCuts,methodName,methodOptions);
   factory->TrainAllMethods();
   factory->TestAllMethods();
   factory->EvaluateAllMethods();    
   
   // --------------------------------------------------------------
   // Save the output
   outputFile->Close();

   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVARegression is done!" << std::endl;      
   delete factory;

}
开发者ID:skyriacoCMS,项目名称:PhotonID,代码行数:86,代码来源:Reg.C

示例10: main


//.........这里部分代码省略.........
	std::vector<TFile*> SignalSamples;
	for(unsigned int sigIter=0;sigIter<signallist.size();++sigIter){
		SignalSamples.push_back(TFile::Open((folder+signallist.at(sigIter)+"_mt_2012.root").c_str()));
	}

	std::vector<TTree*> backgroundTrees;
	for(unsigned int iter2=0;iter2<BackgroundSamples.size();++iter2){
		backgroundTrees.push_back(dynamic_cast<TTree*>(BackgroundSamples.at(iter2)->Get("ntuple")));
	}

	std::vector<TTree*> signalTrees;
	for(unsigned int sigIter2=0;sigIter2<SignalSamples.size();++sigIter2){
		signalTrees.push_back(dynamic_cast<TTree*>(SignalSamples.at(sigIter2)->Get("ntuple")));
	}

	TFile *outfile = new TFile((output_folder+output_name).c_str(),"RECREATE");

	TMVA::Factory *factory = new TMVA::Factory(classname,outfile,"!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification");


	std::vector<std::string> vars;
	std::ifstream parafile(paramfile2.c_str());
	std::cout<<paramfile2.c_str()<<std::endl;
	string line;
	while(getline(parafile,line)){
		vars.push_back(line);
	}
	parafile.close();

	std::cout<<(vars.at(0)).c_str()<<std::endl;

	std::vector<float> var2;
	for(unsigned int variter=0;variter<vars.size();++variter){
		var2.push_back(::atof((vars.at(variter)).c_str()));
	}


	for(unsigned int variter=0;variter<vars.size();++variter){
		factory->AddVariable((vars.at(variter)).c_str(),(vars.at(variter)).c_str(),"",'F');
	}

	factory->AddSpectator("mt_1","mt_1","",'F');
	factory->AddSpectator("n_prebjets","n_prebjets","",'I');
	factory->AddSpectator("prebjetbcsv_1","prebjetbcsv_1","",'F');
	factory->AddSpectator("prebjetbcsv_2","prebjetbcsv_2","",'F');

	double weightval_=0;

 ParseParamFile(paramfile);	

	for(unsigned int bckgit=0;bckgit<backgroundTrees.size();++bckgit){
		auto it = sample_info_.find(bckglist.at(bckgit).c_str());
		if(it!=sample_info_.end()){
			double evt = it->second.first;
			double xs = it->second.second;
			weightval_=(double) xs/evt;
			std::cout<<weightval_<<std::endl;
		}
		factory->AddBackgroundTree(backgroundTrees.at(bckgit),weightval_);
	}
	for(unsigned int sgit=0;sgit<signalTrees.size();++sgit){
		auto it = sample_info_.find(signallist.at(sgit).c_str());
		if(it!=sample_info_.end()){
			double evt = it->second.first;
			double xs=it->second.second;
			weightval_=(Double_t) xs/evt;
		}
		std::cout<<weightval_<<std::endl;
		factory->AddSignalTree(signalTrees.at(sgit),weightval_);
	}
	factory->SetBackgroundWeightExpression("wt");
	factory->SetSignalWeightExpression("wt");
	TCut mycutb, mycuts;
	if(twotag){
	mycutb="n_prebjets>1&&mt_1<30&&prebjetbcsv_1>0.679&&prebjetbcsv_2>0.679";
	mycuts="n_prebjets>1&&mt_1<30&&prebjetbcsv_1>0.679&&prebjetbcsv_2>0.679";
	}
	else if(onetag){
	mycutb="n_prebjets>1&&mt_1<30&&prebjetbcsv_1>0.679&&prebjetbcsv_2<0.679";
	mycuts="n_prebjets>1&&mt_1<30&&prebjetbcsv_1>0.679&&prebjetbcsv_2<0.679";
	}
	else{
	mycutb="n_prebjets>1&&mt_1<30";
	mycuts="n_prebjets>1&&mt_1<30";
	}
//TCut mycutb="";
//TCut mycuts="";
	factory->PrepareTrainingAndTestTree( mycuts, mycutb,"SplitMode=Random:!V");

	factory->BookMethod( TMVA::Types::kBDT, "BDT","!H:!V:NTrees=850:nEventsMin=150:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" );

	factory->TrainAllMethods();
	factory->TestAllMethods();
	factory->EvaluateAllMethods();

	outfile->Close();
	delete factory;

	return 0;
}
开发者ID:danielwinterbottom,项目名称:ICHiggsTauTau,代码行数:101,代码来源:TMVATrain.cpp

示例11: test2

void test2(){
  //---------------------------------------------------------------
  // This loads the library
  TMVA::Tools::Instance();
  TString outfileName( "trainingBDT_tZq.root" );
  TFile* outputFile = TFile::Open( outfileName, "RECREATE" );
  TMVA::Factory *factory = new TMVA::Factory( "BDT_trainning_tzq", outputFile,"!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification" );
  
  
  
  TFile *input_sig      = TFile::Open( "../TreeReader/outputroot/histofile_tZq.root" );
  TFile *input_wz       = TFile::Open( "../TreeReader/outputroot/histofile_WZ.root" );
  
  
  TTree *signal            = (TTree*)input_sig->Get("Ttree_tZq");
  TTree *background     = (TTree*)input_wz->Get("Ttree_WZ");
  
  factory->AddSignalTree    ( signal,	   1.);
  factory->AddBackgroundTree( background,  1.);
  
  
  std::vector<TString > varList;
  varList.push_back("tree_cosThetaStar");;
  varList.push_back("tree_topMass");     
  varList.push_back("tree_totMass");     
  varList.push_back("tree_deltaPhilb");  
  varList.push_back("tree_deltaRlb");    
  varList.push_back("tree_deltaRTopZ");  
  varList.push_back("tree_asym");        
  varList.push_back("tree_Zpt");         
  varList.push_back("tree_ZEta");        
  varList.push_back("tree_topPt");       
  varList.push_back("tree_topEta");      
  varList.push_back("tree_NJets");       
  varList.push_back("tree_NBJets");	 
  varList.push_back("tree_deltaRZl");	 
  varList.push_back("tree_deltaPhiZmet");
  varList.push_back("tree_btagDiscri");  
  
  varList.push_back("tree_totPt");	
  varList.push_back("tree_totEta");	
  
  
  varList.push_back("tree_leptWPt");	 
  varList.push_back("tree_leptWEta");	 
  varList.push_back("tree_leadJetPt");   
  varList.push_back("tree_leadJetEta");  
  varList.push_back("tree_deltaRZleptW");
  varList.push_back("tree_deltaPhiZleptW");
  
  
  varList.push_back("tree_met" );
  varList.push_back("tree_mTW" );
  
  
  for(unsigned int i=0; i< varList.size() ; i++) factory->AddVariable( varList[i].Data(),    'F');
  
  factory->SetSignalWeightExpression    ("tree_EvtWeight");
  factory->SetBackgroundWeightExpression("tree_EvtWeight");
   
  
  // Apply additional cuts on the signal and background samples (can be different)
   TCut mycuts = ""; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
   TCut mycutb = ""; // for example: TCut mycutb = "abs(var1)<0.5";

   factory->PrepareTrainingAndTestTree( mycuts, mycutb,
                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );
   
   
   
   //factory->BookMethod( TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning:VarTransform=Decorrelate" );
//   factory->BookMethod( TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=100:nEventsMin=100:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning:VarTransform=Decorrelate" );
   factory->BookMethod( TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=100:nEventsMin=100:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning:VarTransform=Decorrelate" );

 


   // Train MVAs using the set of training events
   factory->TrainAllMethods();

   // ---- Evaluate all MVAs using the set of test events
   factory->TestAllMethods();

   // ----- Evaluate and compare performance of all configured MVAs
   factory->EvaluateAllMethods();

   // --------------------------------------------------------------

   // Save the output
   outputFile->Close();

   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVAClassification is done!" << std::endl;

   delete factory;

   // Launch the GUI for the root macros
   if (!gROOT->IsBatch()) TMVAGui( outfileName );

  
//.........这里部分代码省略.........
开发者ID:brunel-physics,项目名称:SingleTop_tZ_Macro,代码行数:101,代码来源:test2.C

示例12: TMVAClassification


//.........这里部分代码省略.........
      // 
      //    // --- begin ----------------------------------------------------------
      //    std::vector<Double_t> vars( 4 ); // vector has size of number of input variables
      //    Float_t  treevars[4];
      //    for (Int_t ivar=0; ivar<4; ivar++) signal->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) );
      //    for (Int_t i=0; i<signal->GetEntries(); i++) {
      //       signal->GetEntry(i);
      //       for (Int_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar];
      //       // add training and test events; here: first half is training, second is testing
      //       // note that the weight can also be event-wise	
      //       if (i < signal->GetEntries()/2) factory->AddSignalTrainingEvent( vars, signalWeight ); 
      //       else                            factory->AddSignalTestEvent    ( vars, signalWeight ); 
      //    }
      //
      //    for (Int_t ivar=0; ivar<4; ivar++) background->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) );
      //    for (Int_t i=0; i<background->GetEntries(); i++) {
      //       background->GetEntry(i); 
      //       for (Int_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar];
      //       // add training and test events; here: first half is training, second is testing
      //       // note that the weight can also be event-wise	
      //       if (i < background->GetEntries()/2) factory->AddBackgroundTrainingEvent( vars, backgroundWeight ); 
      //       else                                factory->AddBackgroundTestEvent    ( vars, backgroundWeight ); 
      //    }
      //    // --- end ------------------------------------------------------------
      //
      // ====== end of register trees ==============================================
   }
   
   // This would set individual event weights (the variables defined in the 
   // expression need to exist in the original TTree)
   //    for signal    : factory->SetSignalWeightExpression("weight1*weight2");
   //    for background: factory->SetBackgroundWeightExpression("weight1*weight2");
   //factory->SetSignalWeightExpression("eventWeight");
   factory->SetBackgroundWeightExpression("1./SLumi");

   // Apply additional cuts on the signal and background samples (can be different)

   TCut mycuts;
   TCut mycutb;

   if( charge == "plus" ) {
     mycuts = "Charge==1 && SystFlag==0 && NJ>=3 && pT1>20. && pT2>20. && NbJmed>0 && TLCat==0 && Flavor<3 && PassZVeto==1"; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
     mycutb = "Charge==1 && SystFlag==0 && NJ>=3 && pT1>20. && pT2>20. && NbJmed>0 && TLCat==0 && Flavor<3 && PassZVeto==1"; // for example: TCut mycutb = "abs(var1)<0.5";
   } else if( charge == "minus" ) {
     mycuts = "Charge==-1 && SystFlag==0 && NJ>=3 && pT1>20. && pT2>20. && NbJmed>0 && TLCat==0 && Flavor<3 && PassZVeto==1"; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
     mycutb = "Charge==-1 && SystFlag==0 && NJ>=3 && pT1>20. && pT2>20. && NbJmed>0 && TLCat==0 && Flavor<3 && PassZVeto==1"; // for example: TCut mycutb = "abs(var1)<0.5";
   } else if( charge == "all" ) {
     mycuts = "              SystFlag==0 && NJ>=3 && pT1>20. && pT2>20. && NbJmed>0 && TLCat==0 && Flavor<3 && PassZVeto==1"; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
     mycutb = "              SystFlag==0 && NJ>=3 && pT1>20. && pT2>20. && NbJmed>0 && TLCat==0 && Flavor<3 && PassZVeto==1"; // for example: TCut mycutb = "abs(var1)<0.5";
   } else {
     std::cout << "only 'plus' and 'minus' and 'all' are allowed for charge." <<std::endl;
     return;
   }

   //if( btagMed_presel_ ) {
   //  mycuts += "NbJmed>0"; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
   //  mycutb += "NbJmed>0"; // for example: TCut mycutb = "abs(var1)<0.5";
   //}


   // tell the factory to use all remaining events in the trees after training for testing:
   factory->PrepareTrainingAndTestTree( mycuts, mycutb,
                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );

   // If no numbers of events are given, half of the events in the tree are used for training, and 
   // the other half for testing:
开发者ID:ETHZ,项目名称:ASAnalysis,代码行数:67,代码来源:TMVAClassification.C

示例13: TMVAClassification


//.........这里部分代码省略.........
      for (UInt_t ivar=nvars-nvarsWithInt; ivar<nvars; ivar++) vars[ivar] = treevars2[ivar];
     // add training and test events; here: first half is training, second is testing
     // note that the weight can also be event-wise
     //for(int ij=0; ij<nvars; ij++) cout << ij << " " << vars[ij] << endl;
     if(isMC && (abs(vars[3])==4)) {
       if (i%2==0)  factory->AddSignalTrainingEvent( vars, weight );
       else                              factory->AddSignalTestEvent    ( vars, weight );
     }
   }
   //   
   //     // Background (has event weights)
   background->SetBranchAddress( "weight", &weight );
   for (UInt_t ivar=0; ivar<nvars-nvarsWithInt; ivar++) background->SetBranchAddress( variables[ivar].c_str(), &(treevars[ivar]) );
   for (UInt_t ivar=nvars-nvarsWithInt; ivar<nvars; ivar++) background->SetBranchAddress( variables[ivar].c_str(), &(treevars2[ivar]) );
   for (UInt_t i=0; i<background->GetEntries(); i++) {
     background->GetEntry(i);
     for (UInt_t ivar=0; ivar<nvars-nvarsWithInt; ivar++) vars[ivar] = treevars[ivar];
      for (UInt_t ivar=nvars-nvarsWithInt; ivar<nvars; ivar++) vars[ivar] = treevars2[ivar];
     // add training and test events; here: first half is training, second is testing
     // note that the weight can also be event-wise
     if(isMC && (abs(vars[3])==5)) {
       if (i%2==0) factory->AddBackgroundTrainingEvent( vars, weight );
       else                                factory->AddBackgroundTestEvent    ( vars, weight );
     }
   }
   // --- end ------------------------------------------------------------
   //
   // --- end of tree registration 

   // Set individual event weights (the variables must exist in the original TTree)
   //    for signal    : factory->SetSignalWeightExpression    ("weight1*weight2");
   //    for background: factory->SetBackgroundWeightExpression("weight1*weight2");
   factory->SetSignalWeightExpression("weight");
   factory->SetBackgroundWeightExpression( "weight" );

   // Apply additional cuts on the signal and background samples (can be different)
   TCut mycuts = ""; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
   TCut mycutb = ""; // for example: TCut mycutb = "abs(var1)<0.5";
   
   // Tell the factory how to use the training and testing events
   //
   // If no numbers of events are given, half of the events in the tree are used 
   // for training, and the other half for testing:
   //    factory->PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" );
   // To also specify the number of testing events, use:
   //    factory->PrepareTrainingAndTestTree( mycut,
   //                                         "NSigTrain=3000:NBkgTrain=3000:NSigTest=3000:NBkgTest=3000:SplitMode=Random:!V" );
   factory->PrepareTrainingAndTestTree( mycuts, mycutb,
                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );

   // ---- Book MVA methods
   //
   // Please lookup the various method configuration options in the corresponding cxx files, eg:
   // src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
   // it is possible to preset ranges in the option string in which the cut optimisation should be done:
   // "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable

   // Cut optimisation
   if (Use["Cuts"])
      factory->BookMethod( TMVA::Types::kCuts, "Cuts",
                           "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart" );

   if (Use["CutsD"])
      factory->BookMethod( TMVA::Types::kCuts, "CutsD",
                           "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate" );
开发者ID:kurtejung,项目名称:charmJets,代码行数:66,代码来源:TMVAClassification.C

示例14: tmstr

std::pair<TString,TString> TMVAClassification (
    TString infilename,
    AnalysisType analysisType = AnalysisType::DIRECT,
    TString additionalRootFileName = "")
{
    TMVA::Tools::Instance();

    std::string tmstr (now ());
    TString tmstmp (tmstr.c_str ());
   
  
    std::cout << "==> Start TMVAClassification" << std::endl;
    std::cout << "-------------------- open input file ---------------- " << std::endl;
    TString fname = infilename; //pathToData + infilename + TString (".root");
    if (analysisType != AnalysisType::TRANSFORMED)
        fname = pathToData + infilename + TString (".root");
    std::cout << "open file " << std::endl << fname.Data () << std::endl;


    std::cout << "-------------------- get tree ---------------- " << std::endl;
    TString treeName = "data";
    if (analysisType == AnalysisType::TRANSFORMED)
        treeName = "transformed";

    std::cout << "-------------------- create tchain with treeName ---------------- " << std::endl;
    std::cout << treeName << std::endl;
    TChain* tree = new TChain (treeName);
    std::cout << "add file" << std::endl;
    std::cout << fname << std::endl;
    tree->Add (fname);
    TChain* treeFriend (NULL);
    if (additionalRootFileName.Length () > 0)
    {
        std::cout << "-------------------- add additional input file ---------------- " << std::endl;
        std::cout << additionalRootFileName << std::endl;
        treeFriend = new TChain (treeName);
        treeFriend->Add (additionalRootFileName);
        tree->AddFriend (treeFriend,"p");
    }
//    tree->Draw ("mass:prediction");
//    return std::make_pair(TString("hallo"),TString ("nix"));
    TString outfileName;
    if (analysisType == AnalysisType::BACKGROUND)
    {
        outfileName = TString ("BACK_" + infilename) + tmstmp + TString (".root");
    }
    else
        outfileName += TString ( "TMVA__" ) + tmstmp + TString (".root");

    std::cout << "-------------------- open output file ---------------- " << std::endl;
    TFile* outputFile = TFile::Open( outfileName, "RECREATE" );

    std::cout << "-------------------- prepare factory ---------------- " << std::endl;
    TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
						"AnalysisType=Classification:Transformations=I:!V" );
    std::cout << "-------------------- add variables ---------------- " << std::endl;


    for (auto varname : variableNames)
    {
	factory->AddVariable (varname.c_str (), 'F');
    }

    for (auto varname : spectatorNames)
    {
	factory->AddSpectator (varname.c_str (), 'F');
    }
    
   
    std::cout << "-------------------- add trees ---------------- " << std::endl;
    TCut signalCut ("signal==1");
    TCut backgroundCut ("signal==0");
    if (analysisType == AnalysisType::TRANSFORMED)
    {
        signalCut = "(signal_original==1 && signal_in==0)";
        backgroundCut = "(signal_original==0 && signal_in==0)";
    }
    if (analysisType == AnalysisType::BACKGROUND)
    {
        signalCut     = TString("(signal==0) * (prediction > 0.7)");
        backgroundCut = TString("(signal==0) * (prediction < 0.4)");
    }
    //tree->Draw ("prediction",signalCut);
    //return std::make_pair(TString("hallo"),TString ("nix"));
    factory->AddTree(tree, "Signal", 1.0, baseCut + signalCut, "TrainingTesting");
    factory->AddTree(tree, "Background", 1.0, baseCut + backgroundCut, "TrainingTesting");


    
    TCut mycuts = ""; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
    TCut mycutb = ""; // for example: TCut mycutb = "abs(var1)<0.5";

    /* // Set individual event weights (the variables must exist in the original TTree) */
    if (analysisType == AnalysisType::BACKGROUND)
    {
        factory->SetSignalWeightExpression ("prediction");
        factory->SetBackgroundWeightExpression ("1");
    }

   
//.........这里部分代码省略.........
开发者ID:bortigno,项目名称:tmva,代码行数:101,代码来源:competition.c


注:本文中的tmva::Factory::SetBackgroundWeightExpression方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。