当前位置: 首页>>代码示例>>C++>>正文


C++ Factory::AddTree方法代码示例

本文整理汇总了C++中tmva::Factory::AddTree方法的典型用法代码示例。如果您正苦于以下问题:C++ Factory::AddTree方法的具体用法?C++ Factory::AddTree怎么用?C++ Factory::AddTree使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tmva::Factory的用法示例。


在下文中一共展示了Factory::AddTree方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: TMVAClassification

void TMVAClassification()
{
   TMVA::Tools::Instance();

   std::cout << "==> Start TMVAClassification" << std::endl;
   TString outfileName( "TMVA.root" );

   TFile* outputFile = TFile::Open( outfileName, "RECREATE" );
   TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
                                               "AnalysisType=Classification" );
   factory->AddVariable("LifeTime", 'F');
   factory->AddVariable("FlightDistance", 'F');
   factory->AddVariable("pt", 'F');
   
   TString fname = "../tau_data/training.root";
   TFile *input = TFile::Open( fname );
   
   TTree *tree     = (TTree*)input->Get("data");
   
   factory->AddTree(tree, "Signal", 1., "signal == 1", "Training");
   factory->AddTree(tree, "Signal", 1., "signal == 1", "Test");
   factory->AddTree(tree, "Background", 1., "signal == 0", "Training");
   factory->AddTree(tree, "Background", 1., "signal == 0", "Test");
   
   // gradient boosting training
   factory->BookMethod(TMVA::Types::kBDT, "GBDT",
                       "NTrees=40:BoostType=Grad:Shrinkage=0.01:MaxDepth=7:UseNvars=6:nCuts=20:MinNodeSize=10");
   factory->TrainAllMethods();
   input->Close();
   outputFile->Close();

   delete factory;
}
开发者ID:dbarge,项目名称:tauTo3mu,代码行数:33,代码来源:tmva.c

示例2: TMVAClassification


//.........这里部分代码省略.........
   // The second argument is the output file for the training results
   // All TMVA output can be suppressed by removing the "!" (not) in
   // front of the "Silent" argument in the option string
//   TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
 //                                              "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification" );
   TMVA::Factory* factory = new TMVA::Factory("TMVAMulticlass_2GeV_barrel2",outputFile,
		                           "!V:!Silent:Color:!DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=multiclass" );
   	TFile* file = TFile::Open("/scratchfs/higgs/yudan/SingleParticle/Reco//all_2GeV/PID_2GeV_E30L_E10mm_H48L_H10mm_2GeV.root");
	if (!file->IsOpen()) std::cout << "could not open file" <<std::endl;

	TTree* treePi = (TTree*)file->Get("Pion");
	if (treePi == 0) std::cout << "could not open tree" <<std::endl;


	TTree* treeMu = (TTree*)file->Get("Muon");
	if (treeMu == 0) std::cout << "could not open tree" <<std::endl;


	TTree* treeE = (TTree*)file->Get("Electron");
	if (treeE == 0) std::cout << "could not open tree" <<std::endl;


   // If you wish to modify default settings
   // (please check "src/Config.h" to see all available global options)
   //    (TMVA::gConfig().GetVariablePlotting()).fTimesRMS = 8.0;
   //    (TMVA::gConfig().GetIONames()).fWeightFileDir = "myWeightDirectory";

   // Define the input variables that shall be used for the MVA training
   // note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)"
   // [all types of expressions that can also be parsed by TTree::Draw( "expression" )]
//   TCut mycuts = "NTrk==1 && MCPP[2]/MCPEn<0.7"; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";


   factory->AddTree( treePi, TString("Pi"), 1. ,"abs(cosTheta)>0.3&&abs(cosTheta)<0.55");
   factory->AddTree( treeMu, TString("Mu"), 1.,"abs(cosTheta)>0.3&&abs(cosTheta)<0.55");
   factory->AddTree( treeE, TString("E"), 1.,"abs(cosTheta)>0.3&&abs(cosTheta)<0.55");



	factory->AddVariable("EcalNHit","EcalNHit", "units", 'I');
	factory->AddVariable("HcalNHit","HcalNHit", "units", 'I');
	factory->AddVariable("NLEcal","NLEcal", "units", 'I');
	factory->AddVariable("NLHcal","NLHcal", "units", 'I');
	factory->AddVariable("maxDisHtoL","maxDisHtoL", "units", 'F');
	factory->AddVariable("avDisHtoL","avDisHtoL", "units", 'F');
	factory->AddVariable("EE := EcalEn/EClu","EcalEn", "units", 'F');
	factory->AddVariable("graDepth","graDepth", "units", 'F');
	factory->AddVariable("cluDepth","cluDepth", "units", 'F');
	factory->AddVariable("minDepth","minDepth", "units", 'F');
	factory->AddVariable("MaxDisHel","MaxDisHel", "units", 'F');
	factory->AddVariable("FD_all","FD_all", "units", 'F');
	factory->AddVariable("FD_ECAL","FD_ECAL", "units", 'F');
	factory->AddVariable("FD_HCAL","FD_HCAL", "units", 'F');
	factory->AddVariable("E_10 := EEClu_L10/EcalEn","EEClu_L10", "units", 'F');
	factory->AddVariable("E_R := EEClu_R/EcalEn","EEClu_R", "units", 'F');
	factory->AddVariable("E_r := EEClu_r/EcalEn","EEClu_r", "units", 'F');
	factory->AddVariable("rms_Hcal","rms_Hcal", "units", 'F');
	factory->AddVariable("av_NHH","av_NHH", "units", 'F');
	factory->AddVariable("AL_Ecal","AL_Ecal", "units", 'I');
	factory->AddVariable("FD_ECALF10","FD_ECALF10", "units", 'F');
	factory->AddVariable("FD_ECALL20","FD_ECALL20", "units", 'F');
	factory->AddVariable("NH_ECALF10","NH_ECALF10", "units", 'I');
	factory->AddVariable("dEdx","dEdx", "units", 'F');
	  
  
   std::cout << "--- TMVAClassification       : Using input file: " << std::endl;
开发者ID:danerdaner,项目名称:Marlin-PID-processor,代码行数:67,代码来源:TMVAClassification_2GeV.C

示例3: main


//.........这里部分代码省略.........
        }
    }

    // --------------------------------------------------------------------------------------------------
    // --- Here the preparation phase begins

    // Create a new root output file
    TFile* outputFile = TFile::Open( outfileName, "RECREATE" );

//   TMVA::Factory *factory = new TMVA::Factory( "TMVAMulticlass",     outputFile, "AnalysisType=multiclass:!V:!Silent:!V:Transformations=I;D" );
    TMVA::Factory *factory = new TMVA::Factory( "TMVAMulticlass",     outputFile, "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=multiclass" );

    factory->AddVariable( "jetpt1" , 'F');
    factory->AddVariable( "jetpt2" , 'F');
    factory->AddVariable( "mjj" , 'F');
    factory->AddVariable( "detajj" , 'F');
    factory->AddVariable( "dphilljetjet" , 'F');

    factory->AddVariable( "pt1" , 'F');
    factory->AddVariable( "pt2" , 'F');
    factory->AddVariable( "mll" , 'F');
    factory->AddVariable( "dphill" , 'F');
    factory->AddVariable( "mth" , 'F');

    factory->AddVariable( "dphillmet" , 'F');
    factory->AddVariable( "mpmet" , 'F');

    factory->AddSpectator( "channel" , 'F');

    for (int iSample=0; iSample<numberOfSamples; iSample++) {
        int numEnt = treeJetLepVect[iSample]->GetEntries(Cut.c_str());
        std::cout << " Sample = " << nameSample[iSample] << " ~ " << nameHumanReadable[iSample] << " --> " << numEnt << std::endl;
        if (numEnt != 0) {
            if (iSample == 0) factory->AddTree( treeJetLepVect[iSample], "Signal", Normalization[iSample] );
            else if (iSample == 1) factory->AddTree( treeJetLepVect[iSample], "Background", Normalization[iSample] );
            else factory->AddTree( treeJetLepVect[iSample], TString(nameHumanReadable[iSample]), Normalization[iSample] );

//     factory->AddTree( treeJetLepVect[iSample], TString(nameHumanReadable[iSample]), Normalization[iSample] );
//     factory->AddTree( treeJetLepVect[iSample], TString(nameHumanReadable[iSample]), Normalization[iSample] , nameWeight.c_str());
            //     factory->AddTree( treeJetLepVect[iSample], TString(nameHumanReadable[iSample]));
        }
    }

//   for (int iSample=0; iSample<numberOfSamples; iSample++){
//    int numEnt = treeJetLepVect[iSample]->GetEntries(Cut.c_str());
//    std::cout << " Sample = " << nameSample[iSample] << " ~ " << nameHumanReadable[iSample] << " --> " << numEnt << std::endl;
//    if (numEnt != 0) {
//     bool isSig = false;
//     for (std::vector<std::string>::const_iterator itSig = SignalName.begin(); itSig != SignalName.end(); itSig++){
//      if (nameHumanReadable[iSample] == *itSig) isSig = true;
//     }
//     if (isSig) {
//      factory->AddTree( treeJetLepVect[iSample], TString("Signal"), Normalization[iSample] ); //---> ci deve essere uno chiamato Signal!
//     }
//     else {
//      factory->AddTree( treeJetLepVect[iSample], TString(nameHumanReadable[iSample]), Normalization[iSample] );
//     }
//    }
//   }
//
//   for (int iSample=0; iSample<numberOfSamples; iSample++){
//    int numEnt = treeJetLepVect[iSample]->GetEntries(Cut.c_str());
//    std::cout << " Sample = " << nameSample[iSample] << " ~ " << nameHumanReadable[iSample] << " --> " << numEnt << std::endl;
//    if (numEnt != 0) {
//     bool isSig = false;
//     for (std::vector<std::string>::const_iterator itSig = SignalName.begin(); itSig != SignalName.end(); itSig++){
开发者ID:ruphy,项目名称:AnalysisPackage_qqHWWlnulnu,代码行数:67,代码来源:MVATrainingMultiClass.cpp

示例4: TMVA_stop


//.........这里部分代码省略.........
//   TTree* signalTestTree =  (TTree*) chSignalTest;
//
//   TTree* bkgTrainingTree =  (TTree*) chBkgTrain;
//   TTree* bkgTestTree =  (TTree*) chBkgTest;
   
//    std::cout << "--- TMVAClassification       : Using bkg input files: -------------------" <<  std::endl;
// 
//    TObjArray *listOfBkgFiles = chbackground->GetListOfFiles();
//    TIter bkgFileIter(listOfBkgFiles);
//    TChainElement* currentBkgFile = 0;
// 
//    while((currentBkgFile = (TChainElement*)bkgFileIter.Next())) {
//      std::cout << currentBkgFile->GetTitle() << std::endl;
//    }
// 
//    std::cout << "--- TMVAClassification       : Using sig input files: -------------------" <<  std::endl;
//    
//    TObjArray *listOfSigFiles = chsignal->GetListOfFiles();
//    TIter sigFileIter(listOfSigFiles);
//    TChainElement* currentSigFile = 0;
// 
//    while((currentSigFile = (TChainElement*)sigFileIter.Next())) {
//      std::cout << currentSigFile->GetTitle() << std::endl;
//    }

   // global event weights per tree (see below for setting event-wise weights)
   Double_t signalWeight     = 1.0;
   Double_t backgroundWeight = 1.0;

   // You can add an arbitrary number of signal or background trees
//   factory->AddSignalTree    ( chSignal,     signalWeight     );
//   factory->AddBackgroundTree( chBackground, backgroundWeight );

   factory->AddTree(chSignal, "Signal", signalWeight, sel0+"mini_rand < 0.5", "train");
   factory->AddTree(chSignal, "Signal", signalWeight, sel0+"mini_rand >= 0.5", "test");
   factory->AddTree(chBackground, "Background", backgroundWeight, sel0+"mini_rand < 0.5", "train");
   factory->AddTree(chBackground, "Background", backgroundWeight, sel0+"mini_rand >= 0.5", "test");
   
   // To give different trees for training and testing, do as follows:
   //factory->AddSignalTree( signalTrainingTree, signalWeight, "Training" );
   //factory->AddSignalTree( signalTestTree,     signalWeight,  "Test" );

   //factory->AddBackgroundTree( bkgTrainingTree, backgroundWeight, "Training" );
   //factory->AddBackgroundTree( bkgTestTree,     backgroundWeight,  "Test" );
   
   // Use the following code instead of the above two or four lines to add signal and background
   // training and test events "by hand"
   // NOTE that in this case one should not give expressions (such as "var1+var2") in the input
   //      variable definition, but simply compute the expression before adding the event
   //
   //     // --- begin ----------------------------------------------------------
   //     std::vector<Double_t> vars( 4 ); // vector has size of number of input variables
   //     Float_t  treevars[4], weight;
   //     
   //     // Signal
   //     for (UInt_t ivar=0; ivar<4; ivar++) signal->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) );
   //     for (UInt_t i=0; i<signal->GetEntries(); i++) {
   //        signal->GetEntry(i);
   //        for (UInt_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar];
   //        // add training and test events; here: first half is training, second is testing
   //        // note that the weight can also be event-wise
   //        if (i < signal->GetEntries()/2.0) factory->AddSignalTrainingEvent( vars, signalWeight );
   //        else                              factory->AddSignalTestEvent    ( vars, signalWeight );
   //     }
   //   
   //     // Background (has event weights)
开发者ID:hooberman,项目名称:UserCode,代码行数:67,代码来源:TMVA_stop.C

示例5: TMVAMulticlass

void TMVAMulticlass(){
   TString outfileName = "TMVAMulticlass.root";
   TFile* outputFile = TFile::Open( outfileName, "RECREATE" );
   TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
                                               "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=multiclass" );
   factory->AddVariable( "var0", 'F' );
   factory->AddVariable( "var1", 'F' );
   TFile *input(0);
   TString fname = "./data.root";
   if (!gSystem->AccessPathName( fname )) {
      // first we try to find data.root in the local directory
      std::cout << "--- TMVAMulticlass   : Accessing " << fname << std::endl;
      input = TFile::Open( fname );
   }
   else {
      gROOT->LoadMacro( "./createData.C");
      create_multiclassdata(20000);
      cout << " created data.root for tests of the multiclass features"<<endl;
      input = TFile::Open( fname );
   }
   if (!input) {
      std::cout << "ERROR: could not open data file" << std::endl;
      exit(1);
   }
   TTree *tree     = (TTree*)input->Get("TreeR");
   
   gROOT->cd( outfileName+TString(":/") );
   factory->AddTree    ( tree, "Signal1",    1. , "cls==0"   );
   factory->AddTree    ( tree, "Signal2",    1. , "cls==1"   );
   factory->AddTree    ( tree, "Background",    1., "cls==2" );
   factory->PrepareTrainingAndTestTree( "", "SplitMode=Random:NormMode=NumEvents:!V" );

   factory->BookMethod( TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.30:UseBaggedGrad:GradBaggingFraction=0.6:SeparationType=GiniIndex:nCuts=20:NNodesMax=5");
   factory->BookMethod( TMVA::Types::kMLP, "MLP", "!H:!V:NeuronType=tanh:VarTransform=N:NCycles=100:HiddenLayers=N+5,3:TestRate=5"); // testing vartransforms
   factory->BookMethod( TMVA::Types::kMLP, "MLP2", "!H:!V:NeuronType=tanh:NCycles=100:HiddenLayers=N+5,3:TestRate=5");
   factory->BookMethod( TMVA::Types::kFDA, "FDA_GA",
                        "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x0*x1:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=300:Cycles=3:Steps=20:Trim=True:SaveBestGen=1" );
   
  // Train MVAs using the set of training events
   factory->TrainAllMethods();

   // ---- Evaluate all MVAs using the set of test events
   factory->TestAllMethods();

   // ----- Evaluate and compare performance of all configured MVAs
   factory->EvaluateAllMethods();

   // --------------------------------------------------------------
   
   // Save the output
   outputFile->Close();
   
   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVAClassification is done!" << std::endl;
   
   delete factory;
   
   // Launch the GUI for the root macros
   if (!gROOT->IsBatch()) TMVAGui( outfileName );
   
   
}
开发者ID:beknapp,项目名称:usercode,代码行数:62,代码来源:TMVAMulticlass.C

示例6: TMVAKaggleHiggs


//.........这里部分代码省略.........
   // [all types of expressions that can also be parsed by TTree::Draw( "expression" )]
   // factory->AddVariable( "myvar1 := var1+var2", 'F' );
   // factory->AddVariable( "myvar2 := var1-var2", "Expression 2", "", 'F' );
   // factory->AddVariable( "var3",                "Variable 3", "units", 'F' );
   // factory->AddVariable( "var4",                "Variable 4", "units", 'F' );

   TString limit ("-900.0");
   TString replacementValue ("0.0");
   std::vector<std::string> vars = {"DER_mass_MMC","DER_mass_transverse_met_lep","DER_mass_vis","DER_pt_h","DER_deltaeta_jet_jet","DER_mass_jet_jet","DER_prodeta_jet_jet","DER_deltar_tau_lep","DER_pt_tot","DER_sum_pt","DER_pt_ratio_lep_tau","DER_met_phi_centrality","DER_lep_eta_centrality","PRI_tau_pt","PRI_tau_eta","PRI_tau_phi","PRI_lep_pt","PRI_lep_eta","PRI_lep_phi","PRI_met","PRI_met_phi","PRI_met_sumet","PRI_jet_num","PRI_jet_leading_pt","PRI_jet_leading_eta","PRI_jet_leading_phi","PRI_jet_subleading_pt","PRI_jet_subleading_eta","PRI_jet_subleading_phi","PRI_jet_all_pt"};
   
   for (std::vector<std::string>::iterator it = vars.begin (), itEnd = vars.end (); it != itEnd; ++it)
   {
       std::string s = *it;
       TString current;
       current.Form ("%s:=(%s<%s?%s:%s)",s.c_str (), s.c_str (), limit.Data (), replacementValue.Data (), s.c_str ());
       factory->AddVariable (current, 'F');
   }

   // You can add so-called "Spectator variables", which are not used in the MVA training,
   // but will appear in the final "TestTree" produced by TMVA. This TestTree will contain the
   // input variables, the response values of all trained MVAs, and the spectator variables

//   factory->AddSpectator( "spec1 := var1*2",  "Spectator 1", "units", 'F' );
//   factory->AddSpectator( "spec2 := var1*3",  "Spectator 2", "units", 'F' );

   
   // global event weights per tree (see below for setting event-wise weights)
   Double_t weight     = 1.0;
//   Double_t backgroundWeight = 1.0;
   
   // You can add an arbitrary number of signal or background trees
//   factory->AddBackgroundTree( background, backgroundWeight );

   factory->AddTree(tree, "Signal", 1., "Label == 1");
   factory->AddTree(tree, "Background", 1., "Label == 0");
   
   // To give different trees for training and testing, do as follows:
   //    factory->AddSignalTree( signalTrainingTree, signalTrainWeight, "Training" );
   //    factory->AddSignalTree( signalTestTree,     signalTestWeight,  "Test" );
   
   // Use the following code instead of the above two or four lines to add signal and background
   // training and test events "by hand"
   // NOTE that in this case one should not give expressions (such as "var1+var2") in the input
   //      variable definition, but simply compute the expression before adding the event
   //
   //     // --- begin ----------------------------------------------------------
   //     std::vector<Double_t> vars( 4 ); // vector has size of number of input variables
   //     Float_t  treevars[4], weight;
   //     
   //     // Signal
   //     for (UInt_t ivar=0; ivar<4; ivar++) signal->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) );
   //     for (UInt_t i=0; i<signal->GetEntries(); i++) {
   //        signal->GetEntry(i);
   //        for (UInt_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar];
   //        // add training and test events; here: first half is training, second is testing
   //        // note that the weight can also be event-wise
   //        if (i < signal->GetEntries()/2.0) factory->AddSignalTrainingEvent( vars, signalWeight );
   //        else                              factory->AddSignalTestEvent    ( vars, signalWeight );
   //     }
   //   
   //     // Background (has event weights)
   //     background->SetBranchAddress( "weight", &weight );
   //     for (UInt_t ivar=0; ivar<4; ivar++) background->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) );
   //     for (UInt_t i=0; i<background->GetEntries(); i++) {
   //        background->GetEntry(i);
   //        for (UInt_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar];
开发者ID:bortigno,项目名称:tmva,代码行数:67,代码来源:TMVAKaggleHiggs.C

示例7: TMVARegression


//.........这里部分代码省略.........

   // Read training and test data (see TMVAClassification for reading ASCII files)
   // load the signal and background event samples from ROOT trees
/*   TFile *input(0);
   TString fname = "./tmva_reg_example.root";
   if (!gSystem->AccessPathName( fname )) 
      input = TFile::Open( fname ); // check if file in local directory exists
   else 
      input = TFile::Open( "http://root.cern.ch/files/tmva_reg_example.root" ); // if not: download from ROOT server
   
   if (!input) {
      std::cout << "ERROR: could not open data file" << std::endl;
      exit(1);
   }
   std::cout << "--- TMVARegression           : Using input file: " << input->GetName() << std::endl;

   // --- Register the regression tree

   TTree *regTree = (TTree*)input->Get("TreeR");
*/

   TChain chainTraining("Events");
   chainTraining.Add("TrainingFiles/training.root");
   TTree *regTreeTraining = (TTree*) chainTraining;

   TChain chainTesting("Events");
   chainTesting.Add("TrainingFiles/testing.root");
   TTree *regTreeTesting = (TTree*) chainTesting;

   // global event weights per tree (see below for setting event-wise weights)
   Double_t regWeight  = 1.0;   

   // You can add an arbitrary number of regression trees
   factory->AddTree( regTreeTraining, "Regression", regWeight, "", "training" );
   factory->AddTree( regTreeTesting, "Regression", regWeight, "", "test" );

   // Apply additional cuts on the signal and background samples (can be different)
   TCut mycut = "hJet_pt[0]>20. && hJet_pt[1]>20. && fabs(hJet_eta[0])<2.5 && fabs(hJet_eta[1])<2.5 && hJet_csv[0]>0. && hJet_csv[1]>0. && hJet_ptLeadTrack[0]<1500. && hJet_ptLeadTrack[1]<1500. && hJet_genJetPt[0]>0. && hJet_genJetPt[1]>0. && hJet_puJetIdL[0]>0.0 && hJet_puJetIdL[1]>0.0";
  TCut testingCut = "hJet_pt[0]>20. && hJet_pt[1]>20. && abs(hJet_eta[0])<2.5 && abs(hJet_eta[1])<2.5";
  TCut mjjCut = "sqrt(pow(hJet_pt[0]*cos(hJet_phi[0])+hJet_pt[1]*cos(hJet_phi[1]),2)+pow(hJet_pt[0]*sin(hJet_phi[0])+hJet_pt[1]*sin(hJet_phi[1]),2)) < 110";

  if(Cat==1) mjjCut = "sqrt(pow(hJet_pt[0]*cos(hJet_phi[0])+hJet_pt[1]*cos(hJet_phi[1]),2)+pow(hJet_pt[0]*sin(hJet_phi[0])+hJet_pt[1]*sin(hJet_phi[1]),2)) > 110";
  TCut jetPtCut="jet_pt>90";
  if(Cat==1) jetPtCut="jet_pt>90";
  //TCut trainingCut = "hJet_pt[0]>20. && hJet_pt[1]>20. && abs(hJet_eta[0])<2.5 && abs(hJet_eta[1])<2.5 && hJet_genJetPt[0]>0. && hJet_genJetPt[1]>0. && hJet_csv[0]>0.0 && hJet_csv[1]>0.0 && hJet_ptLeadTrack[0]<1500. && hJet_ptLeadTrack[1]<1500.";
  TCut trainingCut = "jet_pt>20. && abs(jet_eta)<2.5 && jet_genJetPt>0. && jet_dRJetGenJet < 0.4 && (jet_partonID)==5";

// for example: TCut mycut = "abs(var1)<0.5 && abs(var2-0.5)<1";
// for example: TCut mycut = "abs(var1)<0.5 && abs(var2-0.5)<1";

   // tell the factory to use all remaining events in the trees after training for testing:
   // factory->PrepareTrainingAndTestTree(mycut, "nTrain_Regression=600000:nTest_Regression=600000:SplitMode=Random:NormMode=NumEvents:!V");
   //factory->PrepareTrainingAndTestTree(mycut, "nTrain_Regression=337500:nTest_Regression=337500:SplitMode=Random:NormMode=NumEvents:!V");
   //   factory->PrepareTrainingAndTestTree(mycut, "nTrain_Regression=158393:nTest_Regression=158393:SplitMode=Random:NormMode=NumEvents:!V");
   //factory->PrepareTrainingAndTestTree(mycut, "nTrain_Regression=14197:nTest_Regression=14197:SplitMode=Random:NormMode=NumEvents:!V");
   factory->PrepareTrainingAndTestTree(trainingCut+jetPtCut, "!V");

   // If no numbers of events are given, half of the events in the tree are used 
   // for training, and the other half for testing:
   //    factory->PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" );  

   // ---- Book MVA methods
   //
   // please lookup the various method configuration options in the corresponding cxx files, eg:
   // src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
   // it is possible to preset ranges in the option string in which the cut optimisation should be done:
开发者ID:hebda,项目名称:ggAnalysis,代码行数:67,代码来源:TMVARegression.C

示例8: main

int main(int argc, char * argv[])
{
    //Processing input options
    int c;
    std::string outFname;
    outFname = std::string("QualityNaF.root");

    // Open  input files, get the trees
    TChain *mc = InputFileReader("FileListNtuples_ext.txt","parametri_geo");
    // Preparing options for the TMVA::Factory
    std::string options( 
        "!V:" 
        "!Silent:"
        "Color:"
        "DrawProgressBar:"
        "Transformations=I;D;P;G,D:"
        "AnalysisType=Classification"
    );

    //Creating the factory
    TFile *   ldFile = new TFile(outFname.c_str(),"RECREATE");
    TMVA::Factory * factory = new TMVA::Factory("QualityNaF", ldFile, options.c_str());

    //Preparing variables 
    //general
    /*factory->AddVariable("Chisquare", 'F');
    factory->AddVariable("Layernonusati", 'I');
    factory->AddVariable("NTofUsed", 'I');
    factory->AddVariable("diffR", 'F');
    factory->AddVariable("TOF_Up_Down", 'F');*/
    //Tof	
    //factory->AddVariable("TOFchisq_s", 'F');
    //factory->AddVariable("TOFchisq_t", 'F');

    //RICH	
    factory->AddVariable("Richtotused", 'F');	
    factory->AddVariable("RichPhEl", 'F');
    factory->AddVariable("RICHprob", 'F');
    factory->AddVariable("RICHcollovertotal");
    factory->AddVariable("RICHLipBetaConsistency");  
    factory->AddVariable("RICHTOFBetaConsistency");  
    factory->AddVariable("RICHChargeConsistency");
    
    factory->AddVariable("RICHPmts");
    factory->AddVariable("RICHgetExpected");		
    factory->AddVariable("tot_hyp_p_uncorr");
    factory->AddVariable("Bad_ClusteringRICH");
    factory->AddVariable("NSecondariesRICHrich");

    //factory->AddVariable("HitHValldir"); 
    //factory->AddVariable("HitHVallrefl");  	
    
    //factory->AddVariable("HVBranchCheck:= (HitHValldir - HitHVoutdir) - (HitHVallrefl - HitHVoutrefl)");    

    factory->AddVariable("HitHVoutdir"); 
    factory->AddVariable("HitHVoutrefl");

    //Spectator Variables
    factory->AddSpectator("R", 'F');
    factory->AddSpectator("BetaRICH_new", 'F');	

    //Preselection cuts
    std::string PreSelection    = "qL1>0&&(joinCutmask&187)==187&&qL1<1.75&&R>0";
    std::string ChargeCut 	= "qUtof>0.8&&qUtof<1.3&&qLtof>0.8&&qLtof<1.3";
    std::string VelocityCut 	= /*"Beta<0.8";*/"((joinCutmask>>11))==1024&&BetaRICH_new>0&&BetaRICH_new<0.975";
    std::string signalCut 	= /*"(R/Beta)*(1-Beta^2)^0.5>1.65&&GenMass>1&&GenMass<2";*/"(R/BetaRICH_new)*(1-BetaRICH_new^2)^0.5>0.5&&(R/BetaRICH_new)*(1-BetaRICH_new^2)^0.5<1.5";	
    std::string bkgndCut 	= /*"(R/Beta)*(1-Beta^2)^0.5>1.65&&GenMass>0&&GenMass<1";*/"(R/BetaRICH_new)*(1-BetaRICH_new^2)^0.5>3";		 

    factory->AddTree(mc,"Signal"    ,1,(PreSelection +"&&"+ ChargeCut + "&&" + VelocityCut + "&&"+ signalCut).c_str());
    factory->AddTree(mc,"Background",1,(PreSelection +"&&"+ ChargeCut + "&&" + VelocityCut + "&&"+ bkgndCut).c_str());

    // Preparing
    std::string preselection = "";
    std::string inputparams(
        "SplitMode=Random:"
        "NormMode=NumEvents:"
        "!V"
    );
    factory->PrepareTrainingAndTestTree(preselection.c_str(),inputparams.c_str());

    // Training
    std::string trainparams ="!H:!V:MaxDepth=3";
    factory->BookMethod(TMVA::Types::kBDT, "BDT", trainparams.c_str());

    trainparams ="!H:!V";
    factory->BookMethod(TMVA::Types::kLikelihood, "Likelihood", trainparams.c_str());

    trainparams ="!H:!V:VarTransform=Decorrelate";
    //factory->BookMethod(TMVA::Types::kLikelihood, "LikelihoodD", trainparams.c_str());

    trainparams ="!H:!V";
    //factory->BookMethod(TMVA::Types::kCuts, "Cuts", trainparams.c_str());



    factory->TrainAllMethods();
    factory->TestAllMethods();
    factory->EvaluateAllMethods();
}
开发者ID:francescodimiccoli,项目名称:Deutons,代码行数:99,代码来源:TrainBDT.cpp

示例9: TMVAMulticlass

void TMVAMulticlass( TString myMethodList = "" )
{
   
   // This loads the library
   TMVA::Tools::Instance();

   // to get access to the GUI and all tmva macros
   TString tmva_dir(TString(gRootDir) + "/tmva");
   if(gSystem->Getenv("TMVASYS"))
      tmva_dir = TString(gSystem->Getenv("TMVASYS"));
   gROOT->SetMacroPath(tmva_dir + "/test/:" + gROOT->GetMacroPath() );
   gROOT->ProcessLine(".L TMVAMultiClassGui.C");

   
   //---------------------------------------------------------------
   // default MVA methods to be trained + tested
   std::map<std::string,int> Use;
   Use["MLP"]             = 1;
   Use["BDTG"]            = 1;
   Use["FDA_GA"]          = 0;
   Use["PDEFoam"]         = 0;
   //---------------------------------------------------------------
   
   std::cout << std::endl;
   std::cout << "==> Start TMVAMulticlass" << std::endl;
   
   if (myMethodList != "") {
      for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;
      
      std::vector<TString> mlist = TMVA::gTools().SplitString( myMethodList, ',' );
      for (UInt_t i=0; i<mlist.size(); i++) {
         std::string regMethod(mlist[i]);

         if (Use.find(regMethod) == Use.end()) {
            std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
            for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " ";
            std::cout << std::endl;
            return;
         }
         Use[regMethod] = 1;
      }
   }

   // Create a new root output file.
   TString outfileName = "TMVAMulticlass.root";
   TFile* outputFile = TFile::Open( outfileName, "RECREATE" );
   
   TMVA::Factory *factory = new TMVA::Factory( "TMVAMulticlass", outputFile,
                                               "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=multiclass" );
   factory->AddVariable( "var1", 'F' );
   factory->AddVariable( "var2", "Variable 2", "", 'F' );
   factory->AddVariable( "var3", "Variable 3", "units", 'F' );
   factory->AddVariable( "var4", "Variable 4", "units", 'F' );

   TFile *input(0);
   TString fname = "./tmva_example_multiple_background.root";
   if (!gSystem->AccessPathName( fname )) {
      // first we try to find the file in the local directory
      std::cout << "--- TMVAMulticlass   : Accessing " << fname << std::endl;
      input = TFile::Open( fname );
   }
   else {
      cout << "Creating testdata...." << std::endl;
      gROOT->ProcessLine(".L createData.C+");
      gROOT->ProcessLine("create_MultipleBackground(2000)");
      cout << " created tmva_example_multiple_background.root for tests of the multiclass features"<<endl;
      input = TFile::Open( fname );
   }
   if (!input) {
      std::cout << "ERROR: could not open data file" << std::endl;
      exit(1);
   }

   TTree *signal      = (TTree*)input->Get("TreeS");
   TTree *background0 = (TTree*)input->Get("TreeB0");
   TTree *background1 = (TTree*)input->Get("TreeB1");
   TTree *background2 = (TTree*)input->Get("TreeB2");
   
   gROOT->cd( outfileName+TString(":/") );
   factory->AddTree    (signal,"Signal");
   factory->AddTree    (background0,"bg0");
   factory->AddTree    (background1,"bg1");
   factory->AddTree    (background2,"bg2");
   
   factory->PrepareTrainingAndTestTree( "", "SplitMode=Random:NormMode=NumEvents:!V" );

   if (Use["BDTG"]) // gradient boosted decision trees
      factory->BookMethod( TMVA::Types::kBDT, "BDTG", "!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.10:UseBaggedBoost:BaggedSampleFraction=0.50:nCuts=20:MaxDepth=2");
   if (Use["MLP"]) // neural network
      factory->BookMethod( TMVA::Types::kMLP, "MLP", "!H:!V:NeuronType=tanh:NCycles=1000:HiddenLayers=N+5,5:TestRate=5:EstimatorType=MSE");
   if (Use["FDA_GA"]) // functional discriminant with GA minimizer
      factory->BookMethod( TMVA::Types::kFDA, "FDA_GA", "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=300:Cycles=3:Steps=20:Trim=True:SaveBestGen=1" );
   if (Use["PDEFoam"]) // PDE-Foam approach
      factory->BookMethod( TMVA::Types::kPDEFoam, "PDEFoam", "!H:!V:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Nmin=100:Kernel=None:Compress=T" );
   
  // Train MVAs using the set of training events
   factory->TrainAllMethods();

   // ---- Evaluate all MVAs using the set of test events
   factory->TestAllMethods();
//.........这里部分代码省略.........
开发者ID:CeF3TB,项目名称:BTFAnalysis,代码行数:101,代码来源:TMVAMulticlass.C

示例10: tmstr

std::pair<TString,TString> TMVAClassification (
    TString infilename,
    AnalysisType analysisType = AnalysisType::DIRECT,
    TString additionalRootFileName = "")
{
    TMVA::Tools::Instance();

    std::string tmstr (now ());
    TString tmstmp (tmstr.c_str ());
   
  
    std::cout << "==> Start TMVAClassification" << std::endl;
    std::cout << "-------------------- open input file ---------------- " << std::endl;
    TString fname = infilename; //pathToData + infilename + TString (".root");
    if (analysisType != AnalysisType::TRANSFORMED)
        fname = pathToData + infilename + TString (".root");
    std::cout << "open file " << std::endl << fname.Data () << std::endl;


    std::cout << "-------------------- get tree ---------------- " << std::endl;
    TString treeName = "data";
    if (analysisType == AnalysisType::TRANSFORMED)
        treeName = "transformed";

    std::cout << "-------------------- create tchain with treeName ---------------- " << std::endl;
    std::cout << treeName << std::endl;
    TChain* tree = new TChain (treeName);
    std::cout << "add file" << std::endl;
    std::cout << fname << std::endl;
    tree->Add (fname);
    TChain* treeFriend (NULL);
    if (additionalRootFileName.Length () > 0)
    {
        std::cout << "-------------------- add additional input file ---------------- " << std::endl;
        std::cout << additionalRootFileName << std::endl;
        treeFriend = new TChain (treeName);
        treeFriend->Add (additionalRootFileName);
        tree->AddFriend (treeFriend,"p");
    }
//    tree->Draw ("mass:prediction");
//    return std::make_pair(TString("hallo"),TString ("nix"));
    TString outfileName;
    if (analysisType == AnalysisType::BACKGROUND)
    {
        outfileName = TString ("BACK_" + infilename) + tmstmp + TString (".root");
    }
    else
        outfileName += TString ( "TMVA__" ) + tmstmp + TString (".root");

    std::cout << "-------------------- open output file ---------------- " << std::endl;
    TFile* outputFile = TFile::Open( outfileName, "RECREATE" );

    std::cout << "-------------------- prepare factory ---------------- " << std::endl;
    TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
						"AnalysisType=Classification:Transformations=I:!V" );
    std::cout << "-------------------- add variables ---------------- " << std::endl;


    for (auto varname : variableNames)
    {
	factory->AddVariable (varname.c_str (), 'F');
    }

    for (auto varname : spectatorNames)
    {
	factory->AddSpectator (varname.c_str (), 'F');
    }
    
   
    std::cout << "-------------------- add trees ---------------- " << std::endl;
    TCut signalCut ("signal==1");
    TCut backgroundCut ("signal==0");
    if (analysisType == AnalysisType::TRANSFORMED)
    {
        signalCut = "(signal_original==1 && signal_in==0)";
        backgroundCut = "(signal_original==0 && signal_in==0)";
    }
    if (analysisType == AnalysisType::BACKGROUND)
    {
        signalCut     = TString("(signal==0) * (prediction > 0.7)");
        backgroundCut = TString("(signal==0) * (prediction < 0.4)");
    }
    //tree->Draw ("prediction",signalCut);
    //return std::make_pair(TString("hallo"),TString ("nix"));
    factory->AddTree(tree, "Signal", 1.0, baseCut + signalCut, "TrainingTesting");
    factory->AddTree(tree, "Background", 1.0, baseCut + backgroundCut, "TrainingTesting");


    
    TCut mycuts = ""; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
    TCut mycutb = ""; // for example: TCut mycutb = "abs(var1)<0.5";

    /* // Set individual event weights (the variables must exist in the original TTree) */
    if (analysisType == AnalysisType::BACKGROUND)
    {
        factory->SetSignalWeightExpression ("prediction");
        factory->SetBackgroundWeightExpression ("1");
    }

   
//.........这里部分代码省略.........
开发者ID:bortigno,项目名称:tmva,代码行数:101,代码来源:competition.c


注:本文中的tmva::Factory::AddTree方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。