本文整理汇总了C++中optimizablegraph::Vertex::tempIndex方法的典型用法代码示例。如果您正苦于以下问题:C++ Vertex::tempIndex方法的具体用法?C++ Vertex::tempIndex怎么用?C++ Vertex::tempIndex使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类optimizablegraph::Vertex
的用法示例。
在下文中一共展示了Vertex::tempIndex方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: updateInitialization
bool SparseOptimizerIncremental::updateInitialization(HyperGraph::VertexSet& vset, HyperGraph::EdgeSet& eset)
{
if (batchStep) {
return SparseOptimizerOnline::updateInitialization(vset, eset);
}
//cerr << __PRETTY_FUNCTION__ << endl;
for (HyperGraph::VertexSet::iterator it = vset.begin(); it != vset.end(); ++it) {
OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*it);
v->clearQuadraticForm(); // be sure that b is zero for this vertex
}
// get the touched vertices
_touchedVertices.clear();
for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) {
OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
OptimizableGraph::Vertex* v1 = static_cast<OptimizableGraph::Vertex*>(e->vertices()[0]);
OptimizableGraph::Vertex* v2 = static_cast<OptimizableGraph::Vertex*>(e->vertices()[1]);
if (! v1->fixed())
_touchedVertices.insert(v1);
if (! v2->fixed())
_touchedVertices.insert(v2);
}
//cerr << PVAR(_touchedVertices.size()) << endl;
// updating the internal structures
std::vector<HyperGraph::Vertex*> newVertices;
newVertices.reserve(vset.size());
_activeVertices.reserve(_activeVertices.size() + vset.size());
_activeEdges.reserve(_activeEdges.size() + eset.size());
for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it)
_activeEdges.push_back(static_cast<OptimizableGraph::Edge*>(*it));
//cerr << "updating internal done." << endl;
// update the index mapping
size_t next = _ivMap.size();
for (HyperGraph::VertexSet::iterator it = vset.begin(); it != vset.end(); ++it) {
OptimizableGraph::Vertex* v=static_cast<OptimizableGraph::Vertex*>(*it);
if (! v->fixed()){
if (! v->marginalized()){
v->setTempIndex(next);
_ivMap.push_back(v);
newVertices.push_back(v);
_activeVertices.push_back(v);
next++;
}
else // not supported right now
abort();
}
else {
v->setTempIndex(-1);
}
}
//cerr << "updating index mapping done." << endl;
// backup the tempindex and prepare sorting structure
VertexBackup backupIdx[_touchedVertices.size()];
memset(backupIdx, 0, sizeof(VertexBackup) * _touchedVertices.size());
int idx = 0;
for (HyperGraph::VertexSet::iterator it = _touchedVertices.begin(); it != _touchedVertices.end(); ++it) {
OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*it);
backupIdx[idx].tempIndex = v->tempIndex();
backupIdx[idx].vertex = v;
backupIdx[idx].hessianData = v->hessianData();
++idx;
}
sort(backupIdx, backupIdx + _touchedVertices.size()); // sort according to the tempIndex which is the same order as used later by the optimizer
for (int i = 0; i < idx; ++i) {
backupIdx[i].vertex->setTempIndex(i);
}
//cerr << "backup tempindex done." << endl;
// building the structure of the update
_updateMat.clear(true); // get rid of the old matrix structure
_updateMat.rowBlockIndices().clear();
_updateMat.colBlockIndices().clear();
_updateMat.blockCols().clear();
// placing the current stuff in _updateMat
MatrixXd* lastBlock = 0;
int sizePoses = 0;
for (int i = 0; i < idx; ++i) {
OptimizableGraph::Vertex* v = backupIdx[i].vertex;
int dim = v->dimension();
sizePoses+=dim;
_updateMat.rowBlockIndices().push_back(sizePoses);
_updateMat.colBlockIndices().push_back(sizePoses);
_updateMat.blockCols().push_back(SparseBlockMatrix<MatrixXd>::IntBlockMap());
int ind = v->tempIndex();
//cerr << PVAR(ind) << endl;
if (ind >= 0) {
MatrixXd* m = _updateMat.block(ind, ind, true);
v->mapHessianMemory(m->data());
lastBlock = m;
}
}
lastBlock->diagonal().array() += 1e-6; // HACK to get Eigen value > 0
//.........这里部分代码省略.........
示例2: computeInitialGuess
void SparseOptimizer::computeInitialGuess()
{
OptimizableGraph::VertexSet emptySet;
std::set<Vertex*> backupVertices;
// these are the root nodes where to start the initialization
HyperGraph::VertexSet fixedVertices;
for (EdgeContainer::iterator
it = _activeEdges.begin();
it != _activeEdges.end();
++it)
{
OptimizableGraph::Edge* e = *it;
for (size_t i = 0; i < e->vertices().size(); ++i)
{
OptimizableGraph::Vertex* v =
static_cast<OptimizableGraph::Vertex*>(e->vertices()[i]);
if (v->fixed()) fixedVertices.insert(v);
else
{
// check for having a prior which is able to fully initialize a vertex
for (EdgeSet::const_iterator
vedgeIt = v->edges().begin();
vedgeIt != v->edges().end();
++vedgeIt)
{
OptimizableGraph::Edge* vedge =
static_cast<OptimizableGraph::Edge*>(*vedgeIt);
if ( vedge->vertices().size() == 1
&& vedge->initialEstimatePossible(emptySet, v) > 0.)
{
//cerr << "Initialize with prior for " << v->id() << endl;
vedge->initialEstimate(emptySet, v);
fixedVertices.insert(v);
}
}
}
if (v->tempIndex() == -1)
{
std::set<Vertex*>::const_iterator foundIt = backupVertices.find(v);
if (foundIt == backupVertices.end()) {
v->push();
backupVertices.insert(v);
}
}
}
}
EstimatePropagator estimatePropagator(this);
EstimatePropagator::PropagateCost costFunction(this);
estimatePropagator.propagate(fixedVertices, costFunction);
// restoring the vertices that should not be initialized
for (std::set<Vertex*>::iterator
it = backupVertices.begin();
it != backupVertices.end();
++it)
{
Vertex* v = *it;
v->pop();
}
if (verbose())
{
computeActiveErrors();
cerr << "iteration= -1\t chi2= " << activeChi2()
<< "\t time= 0.0"
<< "\t cumTime= 0.0"
<< "\t (using initial guess from spanning tree)" << endl;
}
}