本文整理汇总了C++中optimizablegraph::Vertex::edges方法的典型用法代码示例。如果您正苦于以下问题:C++ Vertex::edges方法的具体用法?C++ Vertex::edges怎么用?C++ Vertex::edges使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类optimizablegraph::Vertex
的用法示例。
在下文中一共展示了Vertex::edges方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: computeInitialGuess
void SparseOptimizer::computeInitialGuess(EstimatePropagatorCost& costFunction)
{
OptimizableGraph::VertexSet emptySet;
std::set<Vertex*> backupVertices;
HyperGraph::VertexSet fixedVertices; // these are the root nodes where to start the initialization
for (EdgeContainer::iterator it = _activeEdges.begin(); it != _activeEdges.end(); ++it) {
OptimizableGraph::Edge* e = *it;
for (size_t i = 0; i < e->vertices().size(); ++i) {
OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(e->vertex(i));
if (!v)
continue;
if (v->fixed())
fixedVertices.insert(v);
else { // check for having a prior which is able to fully initialize a vertex
for (EdgeSet::const_iterator vedgeIt = v->edges().begin(); vedgeIt != v->edges().end(); ++vedgeIt) {
OptimizableGraph::Edge* vedge = static_cast<OptimizableGraph::Edge*>(*vedgeIt);
if (vedge->vertices().size() == 1 && vedge->initialEstimatePossible(emptySet, v) > 0.) {
//cerr << "Initialize with prior for " << v->id() << endl;
vedge->initialEstimate(emptySet, v);
fixedVertices.insert(v);
}
}
}
if (v->hessianIndex() == -1) {
std::set<Vertex*>::const_iterator foundIt = backupVertices.find(v);
if (foundIt == backupVertices.end()) {
v->push();
backupVertices.insert(v);
}
}
}
}
EstimatePropagator estimatePropagator(this);
estimatePropagator.propagate(fixedVertices, costFunction);
// restoring the vertices that should not be initialized
for (std::set<Vertex*>::iterator it = backupVertices.begin(); it != backupVertices.end(); ++it) {
Vertex* v = *it;
v->pop();
}
if (verbose()) {
computeActiveErrors();
cerr << "iteration= -1\t chi2= " << activeChi2()
<< "\t time= 0.0"
<< "\t cumTime= 0.0"
<< "\t (using initial guess from " << costFunction.name() << ")" << endl;
}
}
示例2: gaugeFreedom
bool SparseOptimizer::gaugeFreedom()
{
if (vertices().empty())
return false;
int maxDim=0;
for (HyperGraph::VertexIDMap::iterator
it = vertices().begin();
it != vertices().end();
it++)
{
OptimizableGraph::Vertex* v =
static_cast<OptimizableGraph::Vertex*>(it->second);
maxDim = std::max(maxDim,v->dimension());
}
for (HyperGraph::VertexIDMap::iterator
it = vertices().begin();
it != vertices().end();
it++)
{
OptimizableGraph::Vertex* v =
static_cast<OptimizableGraph::Vertex*>(it->second);
if (v->dimension() == maxDim)
{
// test for full dimension prior
for (HyperGraph::EdgeSet::const_iterator
eit = v->edges().begin();
eit != v->edges().end();
++eit)
{
OptimizableGraph::Edge* e =
static_cast<OptimizableGraph::Edge*>(*eit);
if (e->vertices().size() == 1 && e->dimension() == maxDim)
return false;
}
}
}
return true;
}
示例3: assert
//.........这里部分代码省略.........
// temporary structures for building the pattern of the Schur complement
SparseBlockMatrixHashMap<PoseMatrixType>* schurMatrixLookup = 0;
if (_doSchur) {
schurMatrixLookup = new SparseBlockMatrixHashMap<PoseMatrixType>(_Hschur->rowBlockIndices(), _Hschur->colBlockIndices());
schurMatrixLookup->blockCols().resize(_Hschur->blockCols().size());
}
// here we assume that the landmark indices start after the pose ones
// create the structure in Hpp, Hll and in Hpl
for (SparseOptimizer::EdgeContainer::const_iterator it=_optimizer->activeEdges().begin(); it!=_optimizer->activeEdges().end(); ++it){
OptimizableGraph::Edge* e = *it;
for (size_t viIdx = 0; viIdx < e->vertices().size(); ++viIdx) {
OptimizableGraph::Vertex* v1 = (OptimizableGraph::Vertex*) e->vertex(viIdx);
int ind1 = v1->hessianIndex();
if (ind1 == -1)
continue;
int indexV1Bak = ind1;
for (size_t vjIdx = viIdx + 1; vjIdx < e->vertices().size(); ++vjIdx) {
OptimizableGraph::Vertex* v2 = (OptimizableGraph::Vertex*) e->vertex(vjIdx);
int ind2 = v2->hessianIndex();
if (ind2 == -1)
continue;
ind1 = indexV1Bak;
bool transposedBlock = ind1 > ind2;
if (transposedBlock){ // make sure, we allocate the upper triangle block
std::swap(ind1, ind2);
}
if (! v1->marginalized() && !v2->marginalized()){
PoseMatrixType* m = _Hpp->block(ind1, ind2, true);
if (zeroBlocks)
m->setZero();
e->mapHessianMemory(m->data(), viIdx, vjIdx, transposedBlock);
if (_Hschur) {// assume this is only needed in case we solve with the schur complement
schurMatrixLookup->addBlock(ind1, ind2);
}
} else if (v1->marginalized() && v2->marginalized()){
// RAINER hmm.... should we ever reach this here????
LandmarkMatrixType* m = _Hll->block(ind1-_numPoses, ind2-_numPoses, true);
if (zeroBlocks)
m->setZero();
e->mapHessianMemory(m->data(), viIdx, vjIdx, false);
} else {
if (v1->marginalized()){
PoseLandmarkMatrixType* m = _Hpl->block(v2->hessianIndex(),v1->hessianIndex()-_numPoses, true);
if (zeroBlocks)
m->setZero();
e->mapHessianMemory(m->data(), viIdx, vjIdx, true); // transpose the block before writing to it
} else {
PoseLandmarkMatrixType* m = _Hpl->block(v1->hessianIndex(),v2->hessianIndex()-_numPoses, true);
if (zeroBlocks)
m->setZero();
e->mapHessianMemory(m->data(), viIdx, vjIdx, false); // directly the block
}
}
}
}
}
if (! _doSchur)
return true;
_DInvSchur->diagonal().resize(landmarkIdx);
_Hpl->fillSparseBlockMatrixCCS(*_HplCCS);
for (size_t i = 0; i < _optimizer->indexMapping().size(); ++i) {
OptimizableGraph::Vertex* v = _optimizer->indexMapping()[i];
if (v->marginalized()){
const HyperGraph::EdgeSet& vedges=v->edges();
for (HyperGraph::EdgeSet::const_iterator it1=vedges.begin(); it1!=vedges.end(); ++it1){
for (size_t i=0; i<(*it1)->vertices().size(); ++i)
{
OptimizableGraph::Vertex* v1= (OptimizableGraph::Vertex*) (*it1)->vertex(i);
if (v1->hessianIndex()==-1 || v1==v)
continue;
for (HyperGraph::EdgeSet::const_iterator it2=vedges.begin(); it2!=vedges.end(); ++it2){
for (size_t j=0; j<(*it2)->vertices().size(); ++j)
{
OptimizableGraph::Vertex* v2= (OptimizableGraph::Vertex*) (*it2)->vertex(j);
if (v2->hessianIndex()==-1 || v2==v)
continue;
int i1=v1->hessianIndex();
int i2=v2->hessianIndex();
if (i1<=i2) {
schurMatrixLookup->addBlock(i1, i2);
}
}
}
}
}
}
}
_Hschur->takePatternFromHash(*schurMatrixLookup);
delete schurMatrixLookup;
_Hschur->fillSparseBlockMatrixCCSTransposed(*_HschurTransposedCCS);
return true;
}
示例4: propagate
void EstimatePropagator::propagate(OptimizableGraph::VertexSet& vset,
const EstimatePropagator::PropagateCost& cost,
const EstimatePropagator::PropagateAction& action,
double maxDistance,
double maxEdgeCost)
{
reset();
PriorityQueue frontier;
for (OptimizableGraph::VertexSet::iterator vit=vset.begin(); vit!=vset.end(); ++vit){
OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*vit);
AdjacencyMap::iterator it = _adjacencyMap.find(v);
assert(it != _adjacencyMap.end());
it->second._distance = 0.;
it->second._parent.clear();
it->second._frontierLevel = 0;
frontier.push(&it->second);
}
while(! frontier.empty()){
AdjacencyMapEntry* entry = frontier.pop();
OptimizableGraph::Vertex* u = entry->child();
double uDistance = entry->distance();
//cerr << "uDistance " << uDistance << endl;
// initialize the vertex
if (entry->_frontierLevel > 0) {
action(entry->edge(), entry->parent(), u);
}
/* std::pair< OptimizableGraph::VertexSet::iterator, bool> insertResult = */ _visited.insert(u);
OptimizableGraph::EdgeSet::iterator et = u->edges().begin();
while (et != u->edges().end()){
OptimizableGraph::Edge* edge = static_cast<OptimizableGraph::Edge*>(*et);
++et;
int maxFrontier = -1;
OptimizableGraph::VertexSet initializedVertices;
for (size_t i = 0; i < edge->vertices().size(); ++i) {
OptimizableGraph::Vertex* z = static_cast<OptimizableGraph::Vertex*>(edge->vertex(i));
AdjacencyMap::iterator ot = _adjacencyMap.find(z);
if (ot->second._distance != numeric_limits<double>::max()) {
initializedVertices.insert(z);
maxFrontier = (max)(maxFrontier, ot->second._frontierLevel);
}
}
assert(maxFrontier >= 0);
for (size_t i = 0; i < edge->vertices().size(); ++i) {
OptimizableGraph::Vertex* z = static_cast<OptimizableGraph::Vertex*>(edge->vertex(i));
if (z == u)
continue;
size_t wasInitialized = initializedVertices.erase(z);
double edgeDistance = cost(edge, initializedVertices, z);
if (edgeDistance > 0. && edgeDistance != std::numeric_limits<double>::max() && edgeDistance < maxEdgeCost) {
double zDistance = uDistance + edgeDistance;
//cerr << z->id() << " " << zDistance << endl;
AdjacencyMap::iterator ot = _adjacencyMap.find(z);
assert(ot!=_adjacencyMap.end());
if (zDistance < ot->second.distance() && zDistance < maxDistance){
//if (ot->second.inQueue)
//cerr << "Updating" << endl;
ot->second._distance = zDistance;
ot->second._parent = initializedVertices;
ot->second._edge = edge;
ot->second._frontierLevel = maxFrontier + 1;
frontier.push(&ot->second);
}
}
if (wasInitialized > 0)
initializedVertices.insert(z);
}
}
}
// writing debug information like cost for reaching each vertex and the parent used to initialize
#ifdef DEBUG_ESTIMATE_PROPAGATOR
cerr << "Writing cost.dat" << endl;
ofstream costStream("cost.dat");
for (AdjacencyMap::const_iterator it = _adjacencyMap.begin(); it != _adjacencyMap.end(); ++it) {
HyperGraph::Vertex* u = it->second.child();
costStream << "vertex " << u->id() << " cost " << it->second._distance << endl;
}
cerr << "Writing init.dat" << endl;
ofstream initStream("init.dat");
vector<AdjacencyMapEntry*> frontierLevels;
for (AdjacencyMap::iterator it = _adjacencyMap.begin(); it != _adjacencyMap.end(); ++it) {
if (it->second._frontierLevel > 0)
frontierLevels.push_back(&it->second);
}
sort(frontierLevels.begin(), frontierLevels.end(), FrontierLevelCmp());
for (vector<AdjacencyMapEntry*>::const_iterator it = frontierLevels.begin(); it != frontierLevels.end(); ++it) {
AdjacencyMapEntry* entry = *it;
OptimizableGraph::Vertex* to = entry->child();
//.........这里部分代码省略.........