当前位置: 首页>>代码示例>>C++>>正文


C++ VectorXd::array方法代码示例

本文整理汇总了C++中eigen::VectorXd::array方法的典型用法代码示例。如果您正苦于以下问题:C++ VectorXd::array方法的具体用法?C++ VectorXd::array怎么用?C++ VectorXd::array使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::VectorXd的用法示例。


在下文中一共展示了VectorXd::array方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: execute

	output fc_rnn::execute(input const& in)
	{
		// Set activation of input neurons
		auto const num_input = in.size();
		for(size_t n = 0; n < num_input; ++n)
		{
			vInput[n] = in[n];
		}

		// Summation for hidden neurons
		Eigen::VectorXd vHiddenSums =
			wmInput * vInput +
			wmHidden * vHidden;
		// Transfer function
		vHidden =
			evaluate(af_hidden, vHiddenSums.array());

		// TODO: Maybe should just store as a single vector?
		Eigen::VectorXd joined(input_layer_count() + hidden_count());
		joined << vInput, vHidden;
		Eigen::VectorXd vOutputSums =
			wmOutput * joined;
		Eigen::VectorXd vOutput =
			evaluate(af_output, vOutputSums.array());

		// Return the output values
		output out{ output_count() };
		std::copy(vOutput.data(), vOutput.data() + output_count(), out.begin());
		return out;
	}
开发者ID:kamrann,项目名称:workbase,代码行数:30,代码来源:fc_rnn.cpp

示例2: bouncyBounds

 // A function to bounce the MCMC proposal off the hard boundaries.
 Eigen::VectorXd bouncyBounds(const Eigen::VectorXd& val,
     const Eigen::VectorXd& min, const Eigen::VectorXd& max)
 { 
   Eigen::VectorXd delta = max - min;
   Eigen::VectorXd result = val;
   Eigen::Matrix<bool, Eigen::Dynamic, 1> tooBig = (val.array() > max.array());
   Eigen::Matrix<bool, Eigen::Dynamic, 1> tooSmall = (val.array() < min.array());
   for (uint i=0; i< result.size(); i++)
   {
     bool big = tooBig(i);
     bool small = tooSmall(i);
     if (big)
     {
       double overstep = val(i)-max(i);
       int nSteps = (int)(overstep /  delta(i));
       double stillToGo = overstep - nSteps*delta(i);
       if (nSteps % 2 == 0)
         result(i) = max(i) - stillToGo;
       else
         result(i) = min(i) + stillToGo;
     }
     if (small)
     {
       double understep = min(i) - val(i);
       int nSteps = (int)(understep / delta(i));
       double stillToGo = understep - nSteps*delta(i);
       if (nSteps % 2 == 0)
         result(i) = min(i) + stillToGo;
       else
         result(i) = max(i) - stillToGo;
     }
   }
   return result;
 }
开发者ID:dtpc,项目名称:stateline,代码行数:35,代码来源:sampler.cpp

示例3: initialize

void corrClass::initialize(Eigen::VectorXd a, Eigen::VectorXd b){
    vecA  = a.array();
    vecB  = b.array();
    sumA  = vecA.sum();
    sumB  = vecB.sum();
    sumA2 = vecA.square().sum();
    sumB2 = vecB.square().sum();
    sumAB = (vecA*vecB).sum();
}
开发者ID:reworkhow,项目名称:OSIM,代码行数:9,代码来源:tools.cpp

示例4: numericalDampingForce

double numericalDampingForce(const EnergyCondition<double> &c, const Eigen::VectorXd &uv, const Eigen::VectorXd &x, const Eigen::VectorXd &v, double d, int i, double dx)
{
	// find dC/dt
	Eigen::VectorXd dCdt = numericalCTimeDerivative(c, x, v, uv, dx);

	// find dC/dx
	Eigen::VectorXd dCdx = numericalFirstCDerivative(c, x, uv, i, dx);
	
	// fd = -d * sum( i, dC_i/dx * dC_i/dt )
	return -d * (dCdx.array() * dCdt.array()).sum();
}
开发者ID:davvm,项目名称:clothSim,代码行数:11,代码来源:EqualityTests.cpp

示例5: main

int main(int argc, char *argv[])
{
  using namespace Eigen;
  using namespace std;

  cout<<"Usage:"<<endl;
  cout<<"[space]  toggle showing input mesh, output mesh or slice "<<endl;
  cout<<"         through tet-mesh of convex hull."<<endl;
  cout<<"'.'/','  push back/pull forward slicing plane."<<endl;
  cout<<endl;

  // Load mesh: (V,T) tet-mesh of convex hull, F contains facets of input
  // surface mesh _after_ self-intersection resolution
  igl::readMESH(TUTORIAL_SHARED_PATH "/big-sigcat.mesh",V,T,F);

  // Compute barycenters of all tets
  igl::barycenter(V,T,BC);

  // Compute generalized winding number at all barycenters
  cout<<"Computing winding number over all "<<T.rows()<<" tets..."<<endl;
  igl::winding_number(V,F,BC,W);

  // Extract interior tets
  MatrixXi CT((W.array()>0.5).count(),4);
  {
    size_t k = 0;
    for(size_t t = 0;t<T.rows();t++)
    {
      if(W(t)>0.5)
      {
        CT.row(k) = T.row(t);
        k++;
      }
    }
  }
  // find bounary facets of interior tets
  igl::boundary_facets(CT,G);
  // boundary_facets seems to be reversed...
  G = G.rowwise().reverse().eval();

  // normalize
  W = (W.array() - W.minCoeff())/(W.maxCoeff()-W.minCoeff());

  // Plot the generated mesh
  igl::opengl::glfw::Viewer viewer;
  update_visualization(viewer);
  viewer.callback_key_down = &key_down;
  viewer.launch();
}
开发者ID:hankstag,项目名称:libigl,代码行数:49,代码来源:main.cpp

示例6: result

std::vector<double> ClassifyMotion::classify_motion(const Eigen::MatrixXd &motion )
{
    double realmin = numeric_limits<double>::min();

    std::vector<double> result( m_nb_classes );
    std::vector<Eigen::MatrixXd> Pxi( m_nb_classes );

    // Compute probability of each class
    for(int i=0;i<m_nb_classes;i++)
    {
        Pxi[i].setZero( motion.cols(), m_nb_states );

        for(int j=0;j<m_nb_states;j++)
        {
            //Compute the new probability p(x|i)
            Pxi[i].col(j) = gauss_pdf( motion, i, j );
        }

        // Compute the log likelihood of the class
        Eigen::VectorXd F = Pxi[i]*m_priors[i];

        for(int k=0;k<F.size();k++)
            if( F(k) < realmin || std::isnan(F(k)) )
                F(k) = realmin;

//        for(int k=0;k<F.size();k++)
//            if( F(k) > 1 )
//                cout << "F(" << k << ") : " << F(k) << endl;

        result[i] = F.array().log().sum()/F.size();
    }


    return result;
}
开发者ID:jmainpri,项目名称:libmove3d-planners,代码行数:35,代码来源:HRICS_classify_motion.cpp

示例7: varianceToWeights

Eigen::VectorXd TrajectoryThread::varianceToWeights(Eigen::VectorXd& desiredVariance, const double beta)
{
    desiredVariance /= maximumVariance;
    desiredVariance = desiredVariance.array().min(varianceThresh); //limit desiredVariance to 0.99 maximum
    Eigen::VectorXd desiredWeights = (Eigen::VectorXd::Ones(desiredVariance.rows()) - desiredVariance) / beta;
    return desiredWeights;
}
开发者ID:ocra-recipes,项目名称:ocra-recipes,代码行数:7,代码来源:TrajectoryThread.cpp

示例8: estimateF

void KukaRMControllerRTNET::estimateF(Eigen::VectorXd& F)
{
	for(unsigned int i=0;i<LWRDOF;i++)
	{
		m_bufSum(i) = m_bufSum(i)-m_FTab(i,m_Fidx);
		m_FTab(i,m_Fidx) = F(i);
		m_bufSum(i) = m_bufSum(i)+F(i);
	}
	
	m_Fidx = m_Fidx+1;
	if(m_Fidx>m_delta-1){
		m_Fidx = 0;
		m_FBoucle = true;
	}
	
	if(m_FBoucle){
		F = m_bufSum/m_delta;
	}
	else{
		F = m_bufSum/m_Fidx;
	}
	
	for(unsigned int i=0;i<LWRDOF;i++)
	{
		if((F.array().abs())(i)>m_FSat)
		{
			if(F(i)>0.0){
				F(i) = m_FSat;
			}
			else{
				F(i) = -m_FSat;
			}
		}
	}
}
开发者ID:ISIR-SYROCO,项目名称:Model_Free_Control_Art,代码行数:35,代码来源:KukaRMC-rtnetcomponent.cpp

示例9: inv

Mat Mat::inv()
{
	if (nrow() != ncol()) throw runtime_error("Mat::inv() error: only symmetric positive definite matrices can be inverted with Mat::inv()");
	if (mattype == MatType::DIAGONAL)
	{
		Eigen::VectorXd diag = matrix.diagonal();
		diag = 1.0 / diag.array();
		vector<Eigen::Triplet<double>> triplet_list;
		
		for (int i = 0; i != diag.size(); ++i)
		{
			triplet_list.push_back(Eigen::Triplet<double>(i, i, diag[i]));
		}
		Eigen::SparseMatrix<double> inv_mat(triplet_list.size(),triplet_list.size());
		inv_mat.setZero();
		inv_mat.setFromTriplets(triplet_list.begin(), triplet_list.end());
		return Mat(row_names, col_names, inv_mat);
	}
	
	//Eigen::ConjugateGradient<Eigen::SparseMatrix<double>> solver;
	Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>> solver;
	solver.compute(matrix);
	Eigen::SparseMatrix<double> I(nrow(), nrow());
	I.setIdentity();
	Eigen::SparseMatrix<double> inv_mat = solver.solve(I);
	return Mat(row_names, col_names, inv_mat);
}
开发者ID:smwesten-usgs,项目名称:pestpp,代码行数:27,代码来源:covariance.cpp

示例10: evaluate

void gaussian_process::evaluate( const Eigen::MatrixXd& domains, Eigen::VectorXd& means, Eigen::VectorXd& variances ) const
{
    if( domains.cols() != domains_.cols() ) { COMMA_THROW( comma::exception, "expected " << domains_.cols() << " column(s) in domains, got " << domains.cols() << std::endl ); }
    Eigen::MatrixXd Kxsx = Eigen::MatrixXd::Zero( domains.rows(), domains_.rows() );
    for( std::size_t r = 0; r < std::size_t( domains.rows() ); ++r )
    {
        const Eigen::VectorXd& row = domains.row( r );
        for( std::size_t c = 0; c < std::size_t( domains_.rows() ); ++c )
        {
            Kxsx( r, c ) = covariance_( row, domains_.row( c ) );
        }
    }
    means = Kxsx * alpha_;
    means.array() += offset_;
    Eigen::MatrixXd Kxxs = Kxsx.transpose();
    L_.matrixL().solveInPlace( Kxxs );
    Eigen::MatrixXd& variance = Kxxs;
    variance = variance.array() * variance.array();
    variances = variance.colwise().sum();
    // for each diagonal variance, set v(r) = -v(r,r) + Kxsxs
    for( std::size_t r = 0; r < std::size_t( domains.rows() ); ++r )
    {
        variances( r ) = -variances( r ) + self_covariance_;
    }
}
开发者ID:ahmmedshakil,项目名称:snark,代码行数:25,代码来源:gaussian_process.cpp

示例11: nextDesVal

void KukaRMControllerRTNET::nextDesVal()
{
	Eigen::VectorXd period = m_freq*m_time;
	Eigen::VectorXd amp = Eigen::VectorXd::Zero(LWRDOF);
	
	if(m_time<1.0){
		amp = m_amp*m_time;
	}
	else{
		amp = m_amp;
	}
	for(unsigned int i=0;i<LWRDOF;i++)
	{
		m_q_des(i) = amp(i)*(period.array().sin())(i)+m_bias(i);
		m_qp_des(i) = amp(i)*m_freq(i)*(period.array().cos())(i);
		m_qpp_des(i) = -amp(i)*m_freq(i)*m_freq(i)*(period.array().sin())(i);
	}
}
开发者ID:ISIR-SYROCO,项目名称:Model_Free_Control_Art,代码行数:18,代码来源:KukaRMC-rtnetcomponent.cpp

示例12:

TimeIntegrator::TimeIntegrator(Eigen::VectorXd &napp)
{
    _napp = napp;
    // Determine nstep, dt, F
    _nstep = 10;
    _dt = 1.0/_nstep;
    Eigen::VectorXd x; x.setLinSpaced(_nstep,0.0,60.0);
    F1=200*x.array().sin();
}
开发者ID:koecher,项目名称:FEAPB,代码行数:9,代码来源:TimeIntegration.cpp

示例13: zero_vec

 Eigen::VectorXd Shrinkage
 (
   const Eigen::VectorXd& vec, const double kappa
 ) const
 {
   Eigen::ArrayXd zero_vec(vec.size());
   zero_vec.setZero();
   return zero_vec.max( vec.array() - kappa) -
          zero_vec.max(-vec.array() - kappa);
 }
开发者ID:HustStevenZ,项目名称:openMVG,代码行数:10,代码来源:l1_solver_admm.hpp

示例14: polyfit

double polyfit(size_t n, size_t deg, const double* xp, const double* yp,
               const double* wp, double* pp)
{
    ConstMappedVector x(xp, n);
    Eigen::VectorXd y = ConstMappedVector(yp, n);
    MappedVector p(pp, deg+1);

    if (deg >= n) {
        throw CanteraError("polyfit", "Polynomial degree ({}) must be less "
            "than number of input data points ({})", deg, n);
    }

    // Construct A such that each row i of A has the elements
    // 1, x[i], x[i]^2, x[i]^3 ... + x[i]^deg
    Eigen::MatrixXd A(n, deg+1);
    A.col(0).setConstant(1.0);

    if (deg > 0) {
        A.col(1) = x;
    }
    for (size_t i = 1; i < deg; i++) {
        A.col(i+1) = A.col(i).array() * x.array();
    }

    if (wp != nullptr && wp[0] > 0) {
        // For compatibility with old Fortran dpolft, input weights are the
        // squares of the weight vector used in this algorithm
        Eigen::VectorXd w = ConstMappedVector(wp, n).cwiseSqrt().eval();

        // Multiply by the weights on both sides
        A = w.asDiagonal() * A;
        y.array() *= w.array();
    }

    // Solve W*A*p = W*y to find the polynomial coefficients
    p = A.colPivHouseholderQr().solve(y);

    // Evaluate the computed polynomial at the input x coordinates to compute
    // the RMS error as the return value
    return (A*p - y).eval().norm() / sqrt(n);
}
开发者ID:CSM-Offenburg,项目名称:cantera,代码行数:41,代码来源:polyfit.cpp

示例15:

      normal_fullrank operator/=(const normal_fullrank& rhs) {
        static const char* function =
          "stan::variational::normal_fullrank::operator/=";

        stan::math::check_size_match(function,
                             "Dimension of lhs", dimension_,
                             "Dimension of rhs", rhs.dimension());

        mu_.array() /= rhs.mu().array();
        L_chol_.array() /= rhs.L_chol().array();
        return *this;
      }
开发者ID:housian0724,项目名称:stan,代码行数:12,代码来源:normal_fullrank.hpp


注:本文中的eigen::VectorXd::array方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。