本文整理汇总了C++中eigen::VectorXd类的典型用法代码示例。如果您正苦于以下问题:C++ VectorXd类的具体用法?C++ VectorXd怎么用?C++ VectorXd使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了VectorXd类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: jointToString
//*************************************************************************************************************************
std::string wholeBodyReach::jointToString(const Eigen::VectorXd &j, int precision)
{
if(j.size()!=ICUB_DOFS && j.size()!=ICUB_DOFS+6)
cout<<"Error in size of joint vector: "<<j.size()<<endl;
int index=0;
string ret = "";
char tmp[350];
if(j.size()==ICUB_DOFS+6)
{
ret += "base(";
for(int i=0;i<6;i++)
{
sprintf(tmp, "% .*lf ", precision, j(index));
ret+=tmp;
index++;
}
ret = ret.substr(0, ret.length()-1); // remove the last character (tab)
ret += ")\t";
}
ret += "torso(";
for(int i=0;i<3;i++)
{
sprintf(tmp, "% .*lf ", precision, j(index));
ret+=tmp;
index++;
}
ret = ret.substr(0, ret.length()-1); // remove the last character (tab)
ret += ")\tl_arm(";
for(int i=0;i<5;i++)
{
sprintf(tmp, "% .*lf ", precision, j(index));
ret+=tmp;
index++;
}
ret = ret.substr(0, ret.length()-1); // remove the last character (tab)
ret += ")\tr_arm(";
for(int i=0;i<5;i++)
{
sprintf(tmp, "% .*lf ", precision, j(index));
ret+=tmp;
index++;
}
ret = ret.substr(0, ret.length()-1); // remove the last character (tab)
ret += ")\tl_leg(";
for(int i=0;i<6;i++)
{
sprintf(tmp, "% .*lf ", precision, j(index));
ret+=tmp;
index++;
}
ret = ret.substr(0, ret.length()-1); // remove the last character (tab)
ret += ")\tr_leg(";
for(int i=0;i<6;i++)
{
sprintf(tmp, "% .*lf ", precision, j(index));
ret+=tmp;
index++;
}
ret += ")";
return ret;
}
示例2: solve
//.........这里部分代码省略.........
}
}
static double nearest_r = 0.05
* distanceFunction(tgi.last_s, tgi.last_g);
/// Get a random state
bool r_ok = false;
do
{
sampler_->sampleUniform(rmotion->state);
r_ok = si_->getStateValidityChecker()->isValid(rmotion->state);
} while (!r_ok && ptc == false);
Motion *nearest_s = tStart_->nearest(rmotion);
Motion *nearest_g = tGoal_->nearest(rmotion);
Motion *last_valid_motion = new Motion(si_);
std::pair<ompl::base::State*, double> last_valid(
last_valid_motion->state, 0);
Motion *new_s = NULL;
Motion *new_g = NULL;
/// Connect random node to start tree
bool succ_s = si_->checkMotion(nearest_s->state, rmotion->state,
last_valid);
if (succ_s)
{
Motion *motion = new Motion(si_);
si_->copyState(motion->state, rmotion->state);
motion->parent = nearest_s;
tStart_->add(motion);
new_s = motion;
}
else
{
if (last_valid.second == 0) last_valid_motion->state = NULL;
Eigen::VectorXd eigen_g((int) si_->getStateDimension());
memcpy(eigen_g.data(),
rmotion->state->as<ompl::base::RealVectorStateSpace::StateType>()->values,
sizeof(double) * eigen_g.rows());
local_map_->jointRef = eigen_g;
local_solver_->getProblem()->setTau(1e-4);
Motion *new_motion = new Motion(si_);
if (localSolve(nearest_s, last_valid_motion->state, new_motion))
{
new_s = new_motion;
tStart_->add(new_motion);
succ_s = true;
}
else if (new_motion->internal_path)
{
si_->copyState(rmotion->state, new_motion->state);
bool addNew = true;
// std::vector<Motion*> n_motions;
// tStart_->nearestR(new_motion, nearest_r, n_motions);
// for (int i = 0; i < n_motions.size(); i++)
// if (!n_motions[i]->global_valid_)
// {
// addNew = false;
// break;
// }
if (addNew)
{
new_motion->global_valid_ = false;
tStart_->add(new_motion);
si_->copyState(rmotion->state, new_motion->state);
}
}
}
示例3: svds_gen
RcppExport SEXP svds_gen(SEXP A_mat_r, SEXP m_scalar_r, SEXP n_scalar_r,
SEXP k_scalar_r, SEXP nu_scalar_r, SEXP nv_scalar_r,
SEXP params_list_r, SEXP mattype_scalar_r)
{
BEGIN_RCPP
Rcpp::List params_svds(params_list_r);
int m = as<int>(m_scalar_r);
int n = as<int>(n_scalar_r);
int k = as<int>(k_scalar_r);
int nu = as<int>(nu_scalar_r);
int nv = as<int>(nv_scalar_r);
int ncv = as<int>(params_svds["ncv"]);
double tol = as<double>(params_svds["tol"]);
int maxitr = as<int>(params_svds["maxitr"]);
int mattype = as<int>(mattype_scalar_r);
// Operation for original matrix
MatProd* op_orig = get_mat_prod_op(A_mat_r, m, n, params_list_r, mattype);
// Operation for SVD
MatProd* op;
if(m > n)
op = new SVDTallOp(op_orig);
else
op = new SVDWideOp(op_orig);
SymEigsSolver<double, LARGEST_ALGE, MatProd> eigs(op, k, ncv);
eigs.init();
int nconv = eigs.compute(maxitr, tol);
if(nconv < k)
Rcpp::warning("only %d singular values converged, less than k = %d", nconv, k);
nu = std::min(nu, nconv);
nv = std::min(nv, nconv);
Eigen::VectorXd evals = eigs.eigenvalues();
Eigen::MatrixXd evecs = eigs.eigenvectors(std::max(nu, nv));
Rcpp::NumericVector d(nconv);
Rcpp::NumericMatrix u(m, nu), v(n, nv);
int nops = 0;
// Copy evals to d and take the square root
std::copy(evals.data(), evals.data() + nconv, d.begin());
std::transform(d.begin(), d.end(), d.begin(), simple_sqrt);
// Copy evecs to u or v according to the shape of A
// If A is tall, copy evecs to v, otherwise copy to u
if(m > n)
std::copy(evecs.data(), evecs.data() + nv * n, v.begin());
else
std::copy(evecs.data(), evecs.data() + nu * m, u.begin());
// Calculate the other one
if(m > n)
{
// A = UDV', A'A = VD^2V', AV = UD, ui = A * vi / di
// evecs has already been copied to v, so we can overwrite evecs
for(int i = 0; i < nu; i++)
{
evecs.col(i) /= d[i];
op_orig->perform_op(&evecs(0, i), &u(0, i));
nops++;
}
} else {
// A = UDV', AA' = UD^2U', A'U = VD, vi = A' * ui / di
// evecs has already been copied to u, so we can overwrite evecs
for(int i = 0; i < nv; i++)
{
evecs.col(i) /= d[i];
op_orig->perform_tprod(&evecs(0, i), &v(0, i));
nops++;
}
}
Rcpp::RObject u_ret;
Rcpp::RObject v_ret;
if(nu > 0) u_ret = u; else u_ret = R_NilValue;
if(nv > 0) v_ret = v; else v_ret = R_NilValue;
delete op;
delete op_orig;
return Rcpp::List::create(
Rcpp::Named("d") = d,
Rcpp::Named("u") = u_ret,
Rcpp::Named("v") = v_ret,
Rcpp::Named("niter") = eigs.num_iterations(),
Rcpp::Named("nops") = eigs.num_operations() * 2 + nops
);
END_RCPP
}
示例4:
TEST(PinholeCamera, functions)
{
const size_t NUM_POINTS = 100;
// instantiate all possible versions of test cameras
std::vector<std::shared_ptr<okvis::cameras::CameraBase> > cameras;
cameras.push_back(
okvis::cameras::PinholeCamera<okvis::cameras::NoDistortion>::createTestObject());
cameras.push_back(
okvis::cameras::PinholeCamera<
okvis::cameras::RadialTangentialDistortion>::createTestObject());
cameras.push_back(
okvis::cameras::PinholeCamera<okvis::cameras::EquidistantDistortion>::createTestObject());
cameras.push_back(
okvis::cameras::PinholeCamera<okvis::cameras::RadialTangentialDistortion8>::createTestObject());
for (size_t c = 0; c < cameras.size(); ++c) {
//std::cout << "Testing " << cameras.at(c)->type() << std::endl;
// try quite a lot of points:
for (size_t i = 0; i < NUM_POINTS; ++i) {
// create a random point in the field of view:
Eigen::Vector2d imagePoint = cameras.at(c)->createRandomImagePoint();
// backProject
Eigen::Vector3d ray;
EXPECT_TRUE(cameras.at(c)->backProject(imagePoint, &ray));
// randomise distance
ray.normalize();
ray *= (0.2 + 8 * (Eigen::Vector2d::Random()[0] + 1.0));
// project
Eigen::Vector2d imagePoint2;
Eigen::Matrix<double, 2, 3> J;
Eigen::Matrix2Xd J_intrinsics;
EXPECT_TRUE(
cameras.at(c)->project(ray, &imagePoint2, &J, &J_intrinsics)
== okvis::cameras::CameraBase::ProjectionStatus::Successful);
// check they are the same
EXPECT_TRUE((imagePoint2 - imagePoint).norm() < 0.01);
// check point Jacobian vs. NumDiff
const double dp = 1.0e-7;
Eigen::Matrix<double, 2, 3> J_numDiff;
for (size_t d = 0; d < 3; ++d) {
Eigen::Vector3d point_p = ray
+ Eigen::Vector3d(d == 0 ? dp : 0, d == 1 ? dp : 0,
d == 2 ? dp : 0);
Eigen::Vector3d point_m = ray
- Eigen::Vector3d(d == 0 ? dp : 0, d == 1 ? dp : 0,
d == 2 ? dp : 0);
Eigen::Vector2d imagePoint_p;
Eigen::Vector2d imagePoint_m;
cameras.at(c)->project(point_p, &imagePoint_p);
cameras.at(c)->project(point_m, &imagePoint_m);
J_numDiff.col(d) = (imagePoint_p - imagePoint_m) / (2 * dp);
}
EXPECT_TRUE((J_numDiff - J).norm() < 0.0001);
// check intrinsics Jacobian
const int numIntrinsics = cameras.at(c)->noIntrinsicsParameters();
Eigen::VectorXd intrinsics;
cameras.at(c)->getIntrinsics(intrinsics);
Eigen::Matrix2Xd J_numDiff_intrinsics;
J_numDiff_intrinsics.resize(2,numIntrinsics);
for (int d = 0; d < numIntrinsics; ++d) {
Eigen::VectorXd di;
di.resize(numIntrinsics);
di.setZero();
di[d] = dp;
Eigen::Vector2d imagePoint_p;
Eigen::Vector2d imagePoint_m;
Eigen::VectorXd intrinsics_p = intrinsics+di;
Eigen::VectorXd intrinsics_m = intrinsics-di;
cameras.at(c)->projectWithExternalParameters(ray, intrinsics_p, &imagePoint_p);
cameras.at(c)->projectWithExternalParameters(ray, intrinsics_m, &imagePoint_m);
J_numDiff_intrinsics.col(d) = (imagePoint_p - imagePoint_m) / (2 * dp);
}
/*std::cout<<J_numDiff_intrinsics<<std::endl;
std::cout<<"----------------"<<std::endl;
std::cout<<J_intrinsics<<std::endl;
std::cout<<"================"<<std::endl;*/
EXPECT_TRUE((J_numDiff_intrinsics - J_intrinsics).norm() < 0.0001);
}
}
}
示例5: add_force_constant_vector
void KRAveragerCis::add_force_constant_vector(const Eigen::VectorXd & ks, const Eigen::VectorXd & rs) {
for (int i = 0; i < ks.rows(); ++i) {
add_force_constant_tuple(ks(i), rs(i));
}
}
示例6: size
inline vcl_size_t size(Eigen::VectorXd const & v) { return v.rows(); }
示例7: main
int main(int argc, char** argv)
{
ros::init(argc, argv, "parser_test");
ros::NodeHandle nh;
try
{
std::string name = "youbot";
RobotPtr robot = RobotPtr(new Robot(name));
ParserPtr parser = ParserPtr(new Parser());
std::string path = "/home/daichi/Work/catkin_ws/src/ahl_ros_pkg/ahl_robot/ahl_robot/yaml/youbot.yaml";
parser->load(path, robot);
robot->getMobility()->print();
ros::MultiThreadedSpinner spinner;
TfPublisherPtr tf_publisher = TfPublisherPtr(new TfPublisher());
const std::string mnp_name = "mnp";
unsigned long cnt = 0;
const double period = 0.001;
ros::Rate r(1 / period);
ahl_filter::DifferentiatorPtr differentiator = ahl_filter::DifferentiatorPtr(new ahl_filter::PseudoDifferentiator(period, 1.0));
Eigen::VectorXd q = Eigen::VectorXd::Constant(robot->getDOF(mnp_name), 0.0);
Eigen::VectorXd dq = Eigen::VectorXd::Constant(robot->getDOF(mnp_name), 0.0);
differentiator->init(q, dq);
Eigen::VectorXd pre_q = q;
//std::ofstream ofs1;
//ofs1.open("result1.hpp");
//std::ofstream ofs2;
//ofs2.open("result2.hpp");
//std::ofstream ofs3;
//ofs3.open("result3.hpp");
while(ros::ok())
{
q = Eigen::VectorXd::Constant(robot->getDOF(mnp_name), 1.0);
double coeff = 1.0 * sin(2.0 * M_PI * 0.1 * cnt * period);
++cnt;
q = coeff * q;
//q = Eigen::VectorXd::Constant(robot->getDOF(mnp_name), M_PI / 2.0);
q.coeffRef(0) = 0.0;
q.coeffRef(1) = 0.0;
q.coeffRef(2) = 0.0;
robot->update(mnp_name, q);
robot->computeBasicJacobian(mnp_name);
robot->computeMassMatrix(mnp_name);
differentiator->apply(q);
Eigen::VectorXd dq1 = robot->getJointVelocity(mnp_name);
Eigen::VectorXd dq2;
differentiator->copyDerivativeValueTo(dq2);
std::cout << "p : " << q.transpose() << std::endl;
std::cout << "pre_p : " << pre_q.transpose() << std::endl;
Eigen::VectorXd dq3 = (q - pre_q) / period;
pre_q = q;
//std::cout << "dq1 : " << dq1.block(3, 0, dq.rows() - 3, 1).transpose() << std::endl;
//std::cout << "dq2 : " << dq2.block(3, 0, dq.rows() - 3, 1).transpose() << std::endl;
//std::cout << "dq3 : " << dq3.block(3, 0, dq.rows() - 3, 1).transpose() << std::endl;
//std::cout << dq << std::endl << std::endl;
//std::cout << cos(2.0 * M_PI * 0.1 * cnt * 0.1) << std::endl;
tf_publisher->publish(robot, false);
/*
ofs1 << cnt * period << " ";
ofs2 << cnt * period << " ";
ofs3 << cnt * period << " ";
for(unsigned int i = 0; i < dq.rows() - 3; ++i)
{
ofs1 << dq1[i + 3] << " ";
ofs2 << dq2[i + 3] << " ";
ofs3 << dq3[i + 3] << " ";
}
ofs1 << std::endl;
ofs2 << std::endl;
ofs3 << std::endl;
*/
r.sleep();
}
}
catch(ahl_robot::Exception& e)
{
ROS_ERROR_STREAM(e.what());
}
//.........这里部分代码省略.........
示例8: evalGradient
//==============================================================================
void NullFunction::evalGradient(const Eigen::VectorXd& _x,
Eigen::Map<Eigen::VectorXd> _grad)
{
_grad.resize(_x.size());
_grad.setZero();
}
示例9: setUpperBounds
//==============================================================================
void Problem::setUpperBounds(const Eigen::VectorXd& _ub)
{
assert(static_cast<std::size_t>(_ub.size()) == mDimension && "Invalid size.");
mUpperBounds = _ub;
}
示例10: scalarProduct
double Statistics::scalarProduct(const Eigen::VectorXd& cv)
{
return cv.dot(cv);
}
示例11: main
int main(int argc, char **argv) {
Random::randomize();
std::string paramfile = "multi.ini";
int test = 1;
char c;
while ((c = getopt(argc, argv, "p:h")) != EOF) {
switch (c) {
case 'p':
paramfile = optarg;
break;
case 'h':
default:
std::cerr << "Usage: " << argv[0] << " [options]\n";
std::cerr << "\nOptions:\n";
std::cerr << "-p <file>: use the given parameter file\n";
std::cerr << "-h: this help\n";
return 1;
}
}
TParam p;
p.loadTree(paramfile);
MultiAgentMotionModel *motionModel;
std::string typestr = p("multi_rotor_control/type").toString();
if (typestr == "point2d") {
motionModel = new Point2dMotionModel();
} else if (typestr == "rotor2d") {
motionModel = new Rotor2dMotionModel();
} else {
std::cerr << "Error: Unknown type '" << typestr << "' - exiting\n";
exit(-1);
}
motionModel->init(p);
TargetTrackingController ttc;
ttc.init(p);
std::vector<const SensorModel*> sensorModels = ttc.getTopology().getSensorModels();
if (test == 1) {
// online test
TargetTrajectory tt;
tt.init(p);
EKF ekf(motionModel);
ekf.init(p);
std::ofstream topo_out("topo.out");
std::ofstream multi_out("multi.out");
unsigned int nA = motionModel->getNumAgents();
unsigned int nT = motionModel->getNumTargets();
unsigned int aSD = motionModel->getAgentStateDim();
unsigned int cSD = motionModel->getAgentControlDim();
unsigned int tSD = motionModel->getTargetStateDim();
// test output
Eigen::VectorXd state = p("estimation/initialState").toVectorXd();
for (unsigned int i=0; !tt.atEnd(); ++i) {
Eigen::VectorXd mean = ekf.getMean();
Eigen::MatrixXd cov = ekf.getCovariance();
// Eigen::VectorXd control(nA*cSD);
// Eigen::VectorXd targetPosition = state.segment(aSD*nA, cSD);
// for (unsigned int i=0; i<nA; ++i) {
// control.segment(cSD*i, cSD) = (targetPosition - state.segment(aSD*i, cSD))/p("estimation/motionDt").toDouble();
// }
Eigen::VectorXd control = ttc.getControlTopo(&ekf, motionModel, sensorModels);
multi_out << aSD << " " << cSD << " " << tSD << " 0 0 " << nA << " " << nT << " 0 0 0"
<< " " << state.transpose()
<< " " << control.transpose()
<< " " << mean.transpose();
multi_out << " " << Eigen::Map<Eigen::MatrixXd>(cov.data(), 1, cov.cols()*cov.cols());
// for (int i=0; i<N+1; ++i) {
// multi_out << " " << cov(2*agentStateDim, 2*agentStateDim) << " " << cov(2*agentStateDim, 2*agentStateDim+1) << " " << cov(2*agentStateDim+1, 2*agentStateDim) << " " << cov(2*agentStateDim+1, 2*agentStateDim+1);
// }
multi_out << "\n";
ttc.getTopology().write(topo_out, state);
// simulation
state = motionModel->move(state, control, motionModel->sampleNoise(state, control));
if (Random::uniform() < p("multi_rotor_control/kidnap/target").toDouble()) {
// kidnap target
state.segment(aSD*nA, 2) = tt.randomJump();
ekf.getCovariance().block(aSD*nA, aSD*nA, 4, 4) = Eigen::MatrixXd::Identity(4, 4)*4.0;
} else {
state.segment(aSD*nA, 2) = tt.step();
}
if (Random::uniform() < p("multi_rotor_control/kidnap/agent").toDouble()) {
// kidnap agent
int agent = rand()%nA;
state.segment(aSD*agent, 2) = Eigen::Vector2d(Random::uniform(-1, 1), Random::uniform(-0.5, 0.5));
ekf.getCovariance().block(aSD*agent, aSD*agent, 2, 2) = Eigen::MatrixXd::Identity(2, 2)*4.0;
}
// state estimation
ekf.predict(control);
for (std::vector<const SensorModel*>::const_iterator it = sensorModels.begin();
it != sensorModels.end(); ++it) {
if ((*it)->measurementAvailable(state)) {
Eigen::VectorXd noiseSample = (*it)->sampleNoise(state, (*it)->sense(state));
Eigen::VectorXd measurementSample = (*it)->sense(state, noiseSample);
ekf.correct(measurementSample, *(*it));
}
//.........这里部分代码省略.........
示例12: train
void KPLSModel::train()
{
if (descriptor_matrix_.cols() == 0)
{
throw Exception::InconsistentUsage(__FILE__, __LINE__, "Data must be read into the model before training!");
}
// if (descriptor_matrix_.cols() < no_components_)
// {
// throw Exception::TooManyPLSComponents(__FILE__, __LINE__, no_components_, descriptor_matrix_.cols());
// }
kernel->calculateKernelMatrix(descriptor_matrix_, K_);
Eigen::MatrixXd P; // Matrix P saves all vectors p
int cols = K_.cols();
// determine the number of components that are to be created.
// no_components_ contains the number of components desired by the user,
// but obviously we cannot calculate more PLS components than features
int features = descriptor_matrix_.cols();
unsigned int components_to_create = no_components_;
if (features < no_components_) components_to_create = features;
U_.resize(K_.rows(), components_to_create);
loadings_.resize(cols, components_to_create);
weights_.resize(Y_.cols(), components_to_create);
latent_variables_.resize(K_.rows(), components_to_create);
P.resize(cols, components_to_create);
Eigen::VectorXd w;
Eigen::VectorXd t;
Eigen::VectorXd c;
Eigen::VectorXd u = Y_.col(0);
Eigen::VectorXd u_old;
for (unsigned int j = 0; j < components_to_create; j++)
{
for (int i = 0; i < 10000 ; i++)
{
w = K_.transpose()*u / Statistics::scalarProduct(u);
w = w / Statistics::euclNorm(w);
t = K_*w;
c = Y_.transpose()*t / Statistics::scalarProduct(t);
u_old = u;
u = Y_*c / Statistics::scalarProduct(c);
if (Statistics::euclDistance(u, u_old)/Statistics::euclNorm(u) > 0.0000001)
{
continue;
}
else // if u has converged
{
break;
}
}
Eigen::VectorXd p = K_.transpose() * t / Statistics::scalarProduct(t);
K_ -= t * p.transpose();
U_.col(j) = u;
loadings_.col(j) = w;
weights_.col(j) = c;
P.col(j) = p;
latent_variables_.col(j) = t;
}
// try // p's are not orthogonal to each other, so that in rare cases P.t()*loadings_ is not invertible
// {
// loadings_ = loadings_*(P.t()*loadings_).i();
// }
// catch(BALL::Exception::MatrixIsSingular e)
// {
// Eigen::MatrixXd I; I.setToIdentity(P.cols());
// I *= 0.001;
// loadings_ = loadings_*(P.t()*loadings_+I).i();
// }
Eigen::MatrixXd m = P.transpose()*loadings_;
training_result_ = loadings_*m.colPivHouseholderQr().solve(weights_.transpose());
calculateOffsets();
}
示例13: vectorString
std::string vectorString(const Eigen::VectorXd& m)
{
// Make a string from the bytes
return std::string((char *) m.data(), m.size() * sizeof(m(0)));
}
示例14: test_schur_dense_vs_sparse
void test_schur_dense_vs_sparse(
const TGraphInitRandom *init_random,
const TGraphInitManual *init_manual,
const double lambda = 1e3 )
{
// A linear system object holds the sparse Jacobians for a set of observations.
my_rba_t::rba_problem_state_t::TLinearSystem lin_system;
size_t nUnknowns_k2k=0, nUnknowns_k2f=0;
if (init_random)
{
randomGenerator.randomize(init_random->random_seed);
nUnknowns_k2k=init_random->nUnknowns_k2k;
nUnknowns_k2f=init_random->nUnknowns_k2f;
}
else
{
nUnknowns_k2k=init_manual->nUnknowns_k2k;
nUnknowns_k2f=init_manual->nUnknowns_k2f;
}
// Fill example Jacobians for the test:
// * 2 keyframes -> 1 k2k edge (edges=unknowns)
// * 6 features with unknown positions.
// * 6*2 observations: each feature seen once from each keyframe
// Note: 6*2*2 = 24 is the minimum >= 1*6+3*6=24 unknowns so
// Hessians are invertible
// -----------------------------------------------------------------
// Create observations:
// Don't populate the symbolic structure, just the numeric part.
static char valid_true = 1; // Just to initialize valid bit pointers to this one.
{
lin_system.dh_dAp.setColCount(nUnknowns_k2k);
lin_system.dh_df.setColCount(nUnknowns_k2f);
size_t idx_obs = 0;
for (size_t nKF=0;nKF<=nUnknowns_k2k;nKF++)
{
my_rba_t::jacobian_traits_t::TSparseBlocksJacobians_dh_dAp::col_t * dh_dAp_i = (nKF==0) ? NULL : (&lin_system.dh_dAp.getCol(nKF-1));
for (size_t nLM=0;nLM<nUnknowns_k2f;nLM++)
{
// Do we have an observation of feature "nLM" from keyframe "nKF"??
bool add_this;
if (init_random)
add_this = (randomGenerator.drawUniform(0.0,1.0)<=init_random->PROB_OBS);
else add_this = init_manual->visible[nKF*nUnknowns_k2f + nLM];
if (add_this)
{
// Create observation: KF[nKF] -> LM[nLM]
my_rba_t::jacobian_traits_t::TSparseBlocksJacobians_dh_df::col_t & dh_df_j = lin_system.dh_df.getCol(nLM);
// Random is ok for this test:
if (dh_dAp_i)
{
randomGenerator.drawGaussian1DMatrix( (*dh_dAp_i)[idx_obs].num );
(*dh_dAp_i)[idx_obs].sym.is_valid = &valid_true;
}
randomGenerator.drawGaussian1DMatrix( dh_df_j[idx_obs].num.setRandom() );
dh_df_j[idx_obs].sym.is_valid = &valid_true;
idx_obs++;
}
}
}
// Debug point:
//if ( idx_obs != (1+nUnknowns_k2k)*nUnknowns_k2f ) cout << "#k2k: " << nUnknowns_k2k << " #k2f: " << nUnknowns_k2f << " #obs: " << idx_obs << " out of max.=" << (1+nUnknowns_k2k)*nUnknowns_k2f << endl;
}
// A default gradient:
Eigen::VectorXd minus_grad; // The negative of the gradient.
const size_t idx_start_f = 6*nUnknowns_k2k;
const size_t nLMs_scalars = 3*nUnknowns_k2f;
const size_t nUnknowns_scalars = idx_start_f + nLMs_scalars;
minus_grad.resize(nUnknowns_scalars);
minus_grad.setOnes();
#if 0
lin_system.dh_dAp.saveToTextFileAsDense("test_dh_dAp.txt");
lin_system.dh_df.saveToTextFileAsDense("test_dh_df.txt");
#endif
// ------------------------------------------------------------
// 1st) Evaluate Schur naively with dense matrices
// ------------------------------------------------------------
CMatrixDouble dense_dh_dAp, dense_dh_df;
lin_system.dh_dAp.getAsDense(dense_dh_dAp);
lin_system.dh_df.getAsDense (dense_dh_df);
const CMatrixDouble dense_HAp = dense_dh_dAp.transpose() * dense_dh_dAp;
const CMatrixDouble dense_Hf = dense_dh_df.transpose() * dense_dh_df;
const CMatrixDouble dense_HApf = dense_dh_dAp.transpose() * dense_dh_df;
CMatrixDouble dense_Hf_plus_lambda = dense_Hf;
for (size_t i=0;i<nLMs_scalars;i++)
dense_Hf_plus_lambda(i,i)+=lambda;
//.........这里部分代码省略.........
示例15: setOptimalSolution
//==============================================================================
void Problem::setOptimalSolution(const Eigen::VectorXd& _optParam)
{
assert(static_cast<std::size_t>(_optParam.size()) == mDimension
&& "Invalid size.");
mOptimalSolution = _optParam;
}