当前位置: 首页>>代码示例>>C++>>正文


C++ MatrixBase::rows方法代码示例

本文整理汇总了C++中eigen::MatrixBase::rows方法的典型用法代码示例。如果您正苦于以下问题:C++ MatrixBase::rows方法的具体用法?C++ MatrixBase::rows怎么用?C++ MatrixBase::rows使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::MatrixBase的用法示例。


在下文中一共展示了MatrixBase::rows方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: cat

IGL_INLINE void igl::cat(
  const int dim,
  const Eigen::MatrixBase<Derived> & A, 
  const Eigen::MatrixBase<Derived> & B,
  MatC & C)
{
  assert(dim == 1 || dim == 2);
  // Special case if B or A is empty
  if(A.size() == 0)
  {
    C = B;
    return;
  }
  if(B.size() == 0)
  {
    C = A;
    return;
  }

  if(dim == 1)
  {
    assert(A.cols() == B.cols());
    C.resize(A.rows()+B.rows(),A.cols());
    C << A,B;
  }else if(dim == 2)
  {
    assert(A.rows() == B.rows());
    C.resize(A.rows(),A.cols()+B.cols());
    C << A,B;
  }else
  {
    fprintf(stderr,"cat.h: Error: Unsupported dimension %d\n",dim);
  }
}
开发者ID:daniel-perry,项目名称:libigl,代码行数:34,代码来源:cat.cpp

示例2: forward_propagation

void forward_propagation(Eigen::MatrixBase<Derived1> const &input,
                         Eigen::MatrixBase<Derived2> const &weight,
                         Eigen::MatrixBase<Derived3> const &bias,
                         Eigen::MatrixBase<Derived4> &output,
                         bool no_overlap = true,
                         UnaryFunc func = UnaryFunc())
{
    static_assert(std::is_same<Derived1::Scalar, Derived2::Scalar>::value &&
                  std::is_same<Derived2::Scalar, Derived3::Scalar>::value &&
                  std::is_same<Derived4::Scalar, Derived4::Scalar>::value,
                  "Data type of matrix input, weight, bias and output should be the same");

    if(input.rows() != 0 && weight.rows() != 0 &&
            bias.rows() != 0){        
        if(no_overlap){
            output.noalias() = weight * input;
        }else{
            output = weight * input;
        }

        using Scalar = typename Derived3::Scalar;
        using MatType = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
        using Mapper = Eigen::Map<const MatType, Eigen::Aligned>;
        Mapper Map(&bias(0, 0), bias.size());
        output.colwise() += Map;
        func(output);
    }
}
开发者ID:stereomatchingkiss,项目名称:ocv_libs,代码行数:28,代码来源:propagation.hpp

示例3: crossMx

inline Eigen::Matrix<typename Eigen::internal::traits<Derived_T>::Scalar, 3, 3> crossMx(
    Eigen::MatrixBase<Derived_T> const & v)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Eigen::MatrixBase<Derived_T>, 3);
  assert((v.cols()==3 && v.rows()==1)||(v.rows()==3 && v.cols()==1));
  return crossMx(v(0, 0), v(1, 0), v(2, 0));
}
开发者ID:AhmadZakaria,项目名称:okvis,代码行数:7,代码来源:operators.hpp

示例4: vertex_triangle_adjacency

IGL_INLINE void igl::vertex_triangle_adjacency(
  const Eigen::MatrixBase<DerivedF> & F,
  const int n,
  Eigen::PlainObjectBase<DerivedVF> & VF,
  Eigen::PlainObjectBase<DerivedNI> & NI)
{
  typedef Eigen::Matrix<typename DerivedVF::Scalar,Eigen::Dynamic,1> VectorXI;
  // vfd  #V list so that vfd(i) contains the vertex-face degree (number of
  // faces incident on vertex i)
  VectorXI vfd = VectorXI::Zero(n);
  for (int i = 0; i < F.rows(); i++)
  {
    for (int j = 0; j < 3; j++)
    {
      vfd[F(i,j)]++;
    }
  }
  igl::cumsum(vfd,1,NI);
  // Prepend a zero
  NI = (DerivedNI(n+1)<<0,NI).finished();
  // vfd now acts as a counter
  vfd = NI;

  VF.derived()= Eigen::VectorXi(3*F.rows());
  for (int i = 0; i < F.rows(); i++)
  {
    for (int j = 0; j < 3; j++)
    {
      VF[vfd[F(i,j)]] = i;
      vfd[F(i,j)]++;
    }
  }
}
开发者ID:metorm,项目名称:libigl,代码行数:33,代码来源:vertex_triangle_adjacency.cpp

示例5: per_face_normals

IGL_INLINE void igl::per_face_normals(
  const Eigen::MatrixBase<DerivedV>& V,
  const Eigen::MatrixBase<DerivedF>& F,
  const Eigen::MatrixBase<DerivedZ> & Z,
  Eigen::PlainObjectBase<DerivedN> & N)
{
  N.resize(F.rows(),3);
  // loop over faces
  int Frows = F.rows();
#pragma omp parallel for if (Frows>10000)
  for(int i = 0; i < Frows;i++)
  {
    const Eigen::Matrix<typename DerivedV::Scalar, 1, 3> v1 = V.row(F(i,1)) - V.row(F(i,0));
    const Eigen::Matrix<typename DerivedV::Scalar, 1, 3> v2 = V.row(F(i,2)) - V.row(F(i,0));
    N.row(i) = v1.cross(v2);//.normalized();
    typename DerivedV::Scalar r = N.row(i).norm();
    if(r == 0)
    {
      N.row(i) = Z;
    }else
    {
      N.row(i) /= r;
    }
  }
}
开发者ID:metorm,项目名称:libigl,代码行数:25,代码来源:per_face_normals.cpp

示例6: matGradMultMatNumRows

Eigen::Matrix<typename DerivedA::Scalar, matGradMultMatNumRows(DerivedA::RowsAtCompileTime, DerivedB::ColsAtCompileTime), DerivedDA::ColsAtCompileTime>
matGradMultMat(
    const Eigen::MatrixBase<DerivedA>& A,
    const Eigen::MatrixBase<DerivedB>& B,
    const Eigen::MatrixBase<DerivedDA>& dA,
    const Eigen::MatrixBase<DerivedDB>& dB) {
  assert(dA.cols() == dB.cols());
  const int nq = dA.cols();
  const int nq_at_compile_time = DerivedDA::ColsAtCompileTime;

  Eigen::Matrix<typename DerivedA::Scalar,
  matGradMultMatNumRows(DerivedA::RowsAtCompileTime, DerivedB::ColsAtCompileTime),
  DerivedDA::ColsAtCompileTime> ret(A.rows() * B.cols(), nq);

  for (int col = 0; col < B.cols(); col++) {
    auto block = ret.template block<DerivedA::RowsAtCompileTime, nq_at_compile_time>(col * A.rows(), 0, A.rows(), nq);

    // A * dB part:
    block.noalias() = A * dB.template block<DerivedA::ColsAtCompileTime, nq_at_compile_time>(col * A.cols(), 0, A.cols(), nq);

    for (int row = 0; row < B.rows(); row++) {
      // B * dA part:
      block.noalias() += B(row, col) * dA.template block<DerivedA::RowsAtCompileTime, nq_at_compile_time>(row * A.rows(), 0, A.rows(), nq);
    }
  }
  return ret;

  // much slower and requires eigen/unsupported:
//  return Eigen::kroneckerProduct(Eigen::MatrixXd::Identity(B.cols(), B.cols()), A) * dB + Eigen::kroneckerProduct(B.transpose(), Eigen::MatrixXd::Identity(A.rows(), A.rows())) * dA;
}
开发者ID:KeelyBRao,项目名称:drake,代码行数:30,代码来源:drakeGradientUtil.cpp

示例7: LUPartialPivotDecompositionSuccessful

	MatrixSuccessCode LUPartialPivotDecompositionSuccessful(Eigen::MatrixBase<Derived> const& LU)
	{
		#ifndef BERTINI_DISABLE_ASSERTS
			assert(LU.rows()==LU.cols() && "non-square matrix in LUPartialPivotDecompositionSuccessful");
			assert(LU.rows()>0 && "empty matrix in LUPartialPivotDecompositionSuccessful");
		#endif

			// this loop won't test entry (0,0).  it's tested separately after.
		for (unsigned int ii = LU.rows()-1; ii > 0; ii--)
		{
			if (IsSmallValue(LU(ii,ii))) 
			{
				return MatrixSuccessCode::SmallValue;
			}

			if (IsLargeChange(LU(ii-1,ii-1),LU(ii,ii)))
			{
				return MatrixSuccessCode::LargeChange;
			}
		}

		// this line is the reason for the above assert on non-empty matrix.
		if (IsSmallValue(LU(0,0))) 
		{
			return MatrixSuccessCode::SmallValue;
		}

		return MatrixSuccessCode::Success;
	}
开发者ID:timothodge,项目名称:b2,代码行数:29,代码来源:eigen_extensions.hpp

示例8: normalizeVec

void normalizeVec(
    const Eigen::MatrixBase<Derived>& x,
    typename Derived::PlainObject& x_norm,
    typename Gradient<Derived, Derived::RowsAtCompileTime, 1>::type* dx_norm,
    typename Gradient<Derived, Derived::RowsAtCompileTime, 2>::type* ddx_norm) {

  typename Derived::Scalar xdotx = x.squaredNorm();
  typename Derived::Scalar norm_x = std::sqrt(xdotx);
  x_norm = x / norm_x;

  if (dx_norm) {
    dx_norm->setIdentity(x.rows(), x.rows());
    (*dx_norm) -= x * x.transpose() / xdotx;
    (*dx_norm) /= norm_x;

    if (ddx_norm) {
      auto dx_norm_transpose = transposeGrad(*dx_norm, x.rows());
      auto ddx_norm_times_norm = -matGradMultMat(x_norm, x_norm.transpose(), (*dx_norm), dx_norm_transpose);
      auto dnorm_inv = -x.transpose() / (xdotx * norm_x);
      (*ddx_norm) = ddx_norm_times_norm / norm_x;
      auto temp = (*dx_norm) * norm_x;
      int n = x.rows();
      for (int col = 0; col < n; col++) {
        auto column_as_matrix = (dnorm_inv(0, col) * temp);
        for (int row_block = 0; row_block < n; row_block++) {
          ddx_norm->block(row_block * n, col, n, 1) += column_as_matrix.col(row_block);
        }
      }
    }
  }
}
开发者ID:ElFeo,项目名称:drake,代码行数:31,代码来源:drakeGeometryUtil.cpp

示例9: hessian

IGL_INLINE void igl::hessian(
                             const Eigen::MatrixBase<DerivedV> & V,
                             const Eigen::MatrixBase<DerivedF> & F,
                             Eigen::SparseMatrix<Scalar>& H)
{
    typedef typename DerivedV::Scalar denseScalar;
    typedef typename Eigen::Matrix<denseScalar, Eigen::Dynamic, 1> VecXd;
    typedef typename Eigen::SparseMatrix<Scalar> SparseMat;
    typedef typename Eigen::DiagonalMatrix
                       <Scalar, Eigen::Dynamic, Eigen::Dynamic> DiagMat;
    
    int dim = V.cols();
    assert((dim==2 || dim==3) &&
           "The dimension of the vertices should be 2 or 3");
    
    //Construct the combined gradient matric
    SparseMat G;
    igl::grad(Eigen::PlainObjectBase<DerivedV>(V),
              Eigen::PlainObjectBase<DerivedF>(F),
              G, false);
    SparseMat GG(F.rows(), dim*V.rows());
    GG.reserve(G.nonZeros());
    for(int i=0; i<dim; ++i)
        GG.middleCols(i*G.cols(),G.cols()) = G.middleRows(i*F.rows(),F.rows());
    SparseMat D;
    igl::repdiag(GG,dim,D);
    
    //Compute area matrix
    VecXd areas;
    igl::doublearea(V, F, areas);
    DiagMat A = (0.5*areas).replicate(dim,1).asDiagonal();
    
    //Compute FEM Hessian
    H = D.transpose()*A*G;
}
开发者ID:dukecyto,项目名称:libigl,代码行数:35,代码来源:hessian.cpp

示例10: drpy

typename Gradient<Eigen::Matrix<typename DerivedR::Scalar, RPY_SIZE, 1>, DerivedDR::ColsAtCompileTime>::type drotmat2rpy(
    const Eigen::MatrixBase<DerivedR>& R,
    const Eigen::MatrixBase<DerivedDR>& dR)
{
  EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Eigen::MatrixBase<DerivedR>, SPACE_DIMENSION, SPACE_DIMENSION);
  EIGEN_STATIC_ASSERT(Eigen::MatrixBase<DerivedDR>::RowsAtCompileTime == RotmatSize, THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE);

  const int nq = dR.cols();
  typedef typename DerivedR::Scalar Scalar;
  typedef typename Gradient<Eigen::Matrix<Scalar, RPY_SIZE, 1>, DerivedDR::ColsAtCompileTime>::type ReturnType;
  ReturnType drpy(RPY_SIZE, nq);

  auto dR11_dq = getSubMatrixGradient(dR, 0, 0, R.rows());
  auto dR21_dq = getSubMatrixGradient(dR, 1, 0, R.rows());
  auto dR31_dq = getSubMatrixGradient(dR, 2, 0, R.rows());
  auto dR32_dq = getSubMatrixGradient(dR, 2, 1, R.rows());
  auto dR33_dq = getSubMatrixGradient(dR, 2, 2, R.rows());

  Scalar sqterm = R(2,1) * R(2,1) + R(2,2) * R(2,2);

  using namespace std;
  // droll_dq
  drpy.row(0) = (R(2, 2) * dR32_dq - R(2, 1) * dR33_dq) / sqterm;

  // dpitch_dq
  Scalar sqrt_sqterm = sqrt(sqterm);
  drpy.row(1) = (-sqrt_sqterm * dR31_dq + R(2, 0) / sqrt_sqterm * (R(2, 1) * dR32_dq + R(2, 2) * dR33_dq)) / (R(2, 0) * R(2, 0) + R(2, 1) * R(2, 1) + R(2, 2) * R(2, 2));

  // dyaw_dq
  sqterm = R(0, 0) * R(0, 0) + R(1, 0) * R(1, 0);
  drpy.row(2) = (R(0, 0) * dR21_dq - R(1, 0) * dR11_dq) / sqterm;
  return drpy;
}
开发者ID:ElFeo,项目名称:drake,代码行数:33,代码来源:drakeGeometryUtil.cpp

示例11: allGreaterEquals

bool allGreaterEquals(const Eigen::MatrixBase<DerivedA> & A,
                      const Eigen::MatrixBase<DerivedB> & B,
                      double tolerance = math::NUMERICAL_ZERO_DIFFERENCE)
{
  assertion(A.rows() == B.rows(), "Matrices with different number of rows can't be compared.");
  assertion(A.cols() == B.cols(), "Matrices with different number of cols can't be compared.");
  
  return ((A-B).array() >= tolerance).all();
}
开发者ID:precice,项目名称:precice,代码行数:9,代码来源:differences.hpp

示例12: assert_size

void assert_size(const Eigen::MatrixBase<Derived> &X, int rows_expected, int cols_expected)
{
    common_assert_msg_ex(
            X.rows() == rows_expected && X.cols() == cols_expected,
            "matrix [row, col] mismatch" << std::endl << 
                "actual: [" << X.rows() << ", " << X.cols() << "]" << std::endl << 
                "expected: [" << rows_expected << ", " << cols_expected << "]",
            eigen_utilities::assert_error);
}
开发者ID:eacousineau,项目名称:amber_developer_stack,代码行数:9,代码来源:assert_size.hpp

示例13: mask

void ba81NormalQuad::layer::detectTwoTier(Eigen::ArrayBase<T1> &param,
					  Eigen::MatrixBase<T2> &mean, Eigen::MatrixBase<T3> &cov)
{
	if (mean.rows() < 3) return;

	std::vector<int> orthogonal;

	Eigen::Matrix<Eigen::DenseIndex, Eigen::Dynamic, 1>
		numCov((cov.array() != 0.0).matrix().colwise().count());
	std::vector<int> candidate;
	for (int fx=0; fx < numCov.rows(); ++fx) {
		if (numCov(fx) == 1) candidate.push_back(fx);
	}
	if (candidate.size() > 1) {
		std::vector<bool> mask(numItems());
		for (int cx=candidate.size() - 1; cx >= 0; --cx) {
			std::vector<bool> loading(numItems());
			for (int ix=0; ix < numItems(); ++ix) {
				loading[ix] = param(candidate[cx], itemsMap[ix]) != 0;
			}
			std::vector<bool> overlap(loading.size());
			std::transform(loading.begin(), loading.end(),
				       mask.begin(), overlap.begin(),
				       std::logical_and<bool>());
			if (std::find(overlap.begin(), overlap.end(), true) == overlap.end()) {
				std::transform(loading.begin(), loading.end(),
					       mask.begin(), mask.begin(),
					       std::logical_or<bool>());
				orthogonal.push_back(candidate[cx]);
			}
		}
	}
	std::reverse(orthogonal.begin(), orthogonal.end());

	if (orthogonal.size() == 1) orthogonal.clear();
	if (orthogonal.size() && orthogonal[0] != mean.rows() - int(orthogonal.size())) {
		mxThrow("Independent specific factors must be given after general dense factors");
	}

	numSpecific = orthogonal.size();

	if (numSpecific) {
		Sgroup.assign(numItems(), 0);
		for (int ix=0; ix < numItems(); ix++) {
			for (int dx=orthogonal[0]; dx < mean.rows(); ++dx) {
				if (param(dx, itemsMap[ix]) != 0) {
					Sgroup[ix] = dx - orthogonal[0];
					continue;
				}
			}
		}
		//Eigen::Map< Eigen::ArrayXi > foo(Sgroup.data(), param.cols());
		//mxPrintMat("sgroup", foo);
	}
}
开发者ID:OpenMx,项目名称:OpenMx,代码行数:55,代码来源:ba81quad.cpp

示例14: per_face_normals_stable

IGL_INLINE void igl::per_face_normals_stable(
  const Eigen::MatrixBase<DerivedV>& V,
  const Eigen::MatrixBase<DerivedF>& F,
  Eigen::PlainObjectBase<DerivedN> & N)
{
  using namespace Eigen;
  typedef Matrix<typename DerivedV::Scalar,1,3> RowVectorV3;
  typedef typename DerivedV::Scalar Scalar;

  const size_t m = F.rows();

  N.resize(F.rows(),3);
  // Grad all points
  for(size_t f = 0;f<m;f++)
  {
    const RowVectorV3 p0 = V.row(F(f,0));
    const RowVectorV3 p1 = V.row(F(f,1));
    const RowVectorV3 p2 = V.row(F(f,2));
    const RowVectorV3 n0 = (p1 - p0).cross(p2 - p0);
    const RowVectorV3 n1 = (p2 - p1).cross(p0 - p1);
    const RowVectorV3 n2 = (p0 - p2).cross(p1 - p2);

    // careful sum
    for(int d = 0;d<3;d++)
    {
      // This is a little _silly_ in terms of complexity, but its recursive
      // implementation is clean looking...
      const std::function<Scalar(Scalar,Scalar,Scalar)> sum3 =
        [&sum3](Scalar a, Scalar b, Scalar c)->Scalar
      {
        if(fabs(c)>fabs(a))
        {
          return sum3(c,b,a);
        }
        // c < a
        if(fabs(c)>fabs(b))
        {
          return sum3(a,c,b);
        }
        // c < a, c < b
        if(fabs(b)>fabs(a))
        {
          return sum3(b,a,c);
        }
        return (a+b)+c;
      };

      N(f,d) = sum3(n0(d),n1(d),n2(d));
    }
    // sum better not be sure, or else NaN
    N.row(f) /= N.row(f).norm();
  }

}
开发者ID:metorm,项目名称:libigl,代码行数:54,代码来源:per_face_normals.cpp

示例15: run

    static void run( float a, const Eigen::MatrixBase<Derived2> & A, const Eigen::MatrixBase<Derived1> & x, float  b,  Eigen::MatrixBase<Derived1>  &y) {

        EIGEN_STATIC_ASSERT(sizeof(PREC) == sizeof(typename Derived1::Scalar), YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

        ASSERTMSG(A.cols() == x.rows() && A.rows() == y.rows() ,"ERROR: Vector/Matrix wrong dimension");

        // b_dev = alpha * A_dev * x_old_dev + beta *b_dev
        //Derived2 C = A;

#if USE_INTEL_BLAS == 1

        CBLAS_ORDER     order;
        CBLAS_TRANSPOSE trans;

        if(Derived1::Flags & Eigen::RowMajorBit) {
            order = CblasRowMajor;
        } else {
            order = CblasColMajor;
        }

        trans = CblasNoTrans;


        mkl_set_dynamic(false);
        mkl_set_num_threads(BLAS_NUM_THREADS);
        //cout << "Threads:" << mkl_get_max_threads();
        cblas_sgemv(order, trans, A.rows(), A.cols(), a, const_cast<double*>(&(A.operator()(0,0))), A.outerStride(), const_cast<double*>(&(x.operator()(0,0))), 1, b, &(y.operator()(0,0)), 1);
        //cblas_dgemm(order,trans,trans, A.rows(), A.cols(), A.cols(), 1.0,  const_cast<double*>(&(A.operator()(0,0))), A.rows(), const_cast<double*>(&(A.operator()(0,0))), A.rows(), 1.0 , &(C.operator()(0,0)), C.rows() );
#else

#if USE_GOTO_BLAS == 1
        /* static DGEMVFunc DGEMV = NULL;
        if (DGEMV == NULL) {
          HINSTANCE hInstLibrary = LoadLibrary("libopenblasp-r0.1alpha2.2.dll");
          DGEMV = (DGEMVFunc)GetProcAddress(hInstLibrary, "DGEMV");
        }*/

        char trans = 'N';
        BLAS_INT idx = 1;
        BLAS_INT m = A.rows();
        BLAS_INT n = A.cols();

        sgemv(&trans, &m, &n, &a, &(A.operator()(0,0)), &m, &(x.operator()(0,0)), &idx, &b, &(y.operator()(0,0)), &idx);

        //   FreeLibrary(hInstLibrary);
#else
        ASSERTMSG(false,"No implementation for BLAS defined!");
#endif

#endif

    }
开发者ID:gitter-badger,项目名称:CudaFramework,代码行数:52,代码来源:MatrixVectorMultGPU.hpp


注:本文中的eigen::MatrixBase::rows方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。