本文整理汇总了C++中eigen::MatrixBase类的典型用法代码示例。如果您正苦于以下问题:C++ MatrixBase类的具体用法?C++ MatrixBase怎么用?C++ MatrixBase使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了MatrixBase类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: getJacobian
void ChompOptimizer::getJacobian(int trajectory_point,
Eigen::Vector3d& collision_point_pos,
std::string& joint_name,
Eigen::MatrixBase<Derived>& jacobian) const
{
for(int j = 0; j < num_joints_; j++)
{
if(isParent(joint_name, joint_names_[j]))
{
Eigen::Vector3d column = joint_axes_[trajectory_point][j].cross(Eigen::Vector3d(collision_point_pos(0),
collision_point_pos(1),
collision_point_pos(2))
- joint_positions_[trajectory_point][j]);
jacobian.col(j)[0] = column.x();
jacobian.col(j)[1] = column.y();
jacobian.col(j)[2] = column.z();
}
else
{
jacobian.col(j)[0] = 0.0;
jacobian.col(j)[1] = 0.0;
jacobian.col(j)[2] = 0.0;
}
}
}
示例2: _project_intrinsic
bool CameraModel::_project_intrinsic( const Eigen::MatrixBase<Derived1>& mP3D,
Eigen::MatrixBase<Derived2>& mP2D,
Eigen::MatrixBase<Derived3>& mdP2DI
) const {
if( !project( mP3D, mP2D ) ) {
return false;
}
const unsigned int nNumPoints = mP3D.cols();
const unsigned int nNumCamParams = get_num_parameters();
// Compute finite-diff Jacobians
Derived3 mdP2Dfd( 2, nNumPoints );
Derived3 mP2Dfd( 2, nNumPoints );
double dEps = 1e-4;
Derived2 mP2DP = mP2D;
Derived2 mP2DM = mP2D;
{
// Compute intrinsic Jacobian
// Horrible const_cast ... difficult to avoid
for( size_t kk=0; kk<nNumCamParams; kk++ ) {
std::string sVarName = parameter_index_to_name( kk );
double dVal = get<double>( sVarName );
const_cast<CameraModel*>( this )->set<double>( sVarName, dVal + dEps );
project( mP3D, mP2DP );
const_cast<CameraModel*>( this )->set<double>( sVarName, dVal - dEps );
project( mP3D, mP2DM );
mdP2Dfd = ( mP2DP - mP2DM ) / (2*dEps);
const_cast<CameraModel*>( this )->set<double>( sVarName, dVal );
for( size_t ll=0; ll<nNumPoints; ll++ ) {
mdP2DI.col( nNumCamParams*ll + kk ) = mdP2Dfd.col( ll );
}
}
}
return true;
}
示例3: _project_extrinsic
bool CameraModel::_project_extrinsic( const Eigen::MatrixBase<Derived1>& mP3D,
Eigen::MatrixBase<Derived2>& mP2D,
Eigen::MatrixBase<Derived3>& mdP2DE
) const {
if( !project( mP3D, mP2D ) ) {
return false;
}
const unsigned int nNum3DDims = 3;
const unsigned int nNumPoints = mP3D.cols();
// Compute finite-diff Jacobians
Derived3 mdP2Dfd( 2, nNumPoints );
Derived3 mP2Dfd( 2, nNumPoints );
typename Eigen::internal::traits<Derived1>::Scalar dEps = 1e-4;
Derived2 mP2DP = mP2D;
Derived2 mP2DM = mP2D;
{
// Compute extrinsic Jacobian
for( size_t kk=0; kk<nNum3DDims; kk++ ) {
Derived1 mP3DP = mP3D;
Derived1 mP3DM = mP3D;
mP3DP.row( kk ).array() += dEps;
mP3DM.row( kk ).array() -= dEps;
project( mP3DP, mP2DP );
project( mP3DM, mP2DM );
Derived2 mdP2Dfd = ( mP2DP - mP2DM ) / (2*dEps);
for( size_t ll=0; ll<nNumPoints; ll++ ) {
mdP2DE.col( nNum3DDims*ll + kk ) = mdP2Dfd.col( ll );
}
}
}
return true;
}
示例4: makeCoordinateSystem
inline void makeCoordinateSystem(Eigen::MatrixBase<Derived>& v1,
Eigen::MatrixBase<DerivedOther1>& v2,
Eigen::MatrixBase<DerivedOther2>& v3)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 3);
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(DerivedOther1, 3);
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(DerivedOther2, 3);
/*ASSERTMSG( v1.rows() == 3 && v1.cols()==1 &&
v2.rows() == 3 && v2.cols() == 1 &&
v3.rows() == 3 && v3.cols() == 1
, "IN: "<< v1.rows()<<","<<v1.cols()<<" OUT: "<<
v2.rows()<<","<<v2.cols()<<"/"<<v3.rows()<<","<<v3.cols() );*/
typedef typename Derived::Scalar PREC;
using std::abs;
using std::sqrt;
v1.normalize();
if (abs(v1(0)) > abs(v1(2)))
{
PREC invLen = 1.0 / sqrt(v1(0) * v1(0) + v1(2) * v1(2));
v2 = typename MyMatrix<double>::Vector3(-v1(2) * invLen, 0, v1(0) * invLen);
}
else
{
PREC invLen = 1.0 / sqrt(v1(1) * v1(1) + v1(2) * v1(2));
v2 = typename MyMatrix<double>::Vector3(0, v1(2) * invLen, -v1(1) * invLen);
}
v3 = v1.cross(v2);
v2.normalize();
v3.normalize();
};
示例5: crossMx
inline Eigen::Matrix<typename Eigen::internal::traits<Derived_T>::Scalar, 3, 3> crossMx(
Eigen::MatrixBase<Derived_T> const & v)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Eigen::MatrixBase<Derived_T>, 3);
assert((v.cols()==3 && v.rows()==1)||(v.rows()==3 && v.cols()==1));
return crossMx(v(0, 0), v(1, 0), v(2, 0));
}
示例6: per_face_normals
IGL_INLINE void igl::per_face_normals(
const Eigen::MatrixBase<DerivedV>& V,
const Eigen::MatrixBase<DerivedF>& F,
const Eigen::MatrixBase<DerivedZ> & Z,
Eigen::PlainObjectBase<DerivedN> & N)
{
N.resize(F.rows(),3);
// loop over faces
int Frows = F.rows();
#pragma omp parallel for if (Frows>10000)
for(int i = 0; i < Frows;i++)
{
const Eigen::Matrix<typename DerivedV::Scalar, 1, 3> v1 = V.row(F(i,1)) - V.row(F(i,0));
const Eigen::Matrix<typename DerivedV::Scalar, 1, 3> v2 = V.row(F(i,2)) - V.row(F(i,0));
N.row(i) = v1.cross(v2);//.normalized();
typename DerivedV::Scalar r = N.row(i).norm();
if(r == 0)
{
N.row(i) = Z;
}else
{
N.row(i) /= r;
}
}
}
示例7: drpy
typename Gradient<Eigen::Matrix<typename DerivedR::Scalar, RPY_SIZE, 1>, DerivedDR::ColsAtCompileTime>::type drotmat2rpy(
const Eigen::MatrixBase<DerivedR>& R,
const Eigen::MatrixBase<DerivedDR>& dR)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Eigen::MatrixBase<DerivedR>, SPACE_DIMENSION, SPACE_DIMENSION);
EIGEN_STATIC_ASSERT(Eigen::MatrixBase<DerivedDR>::RowsAtCompileTime == RotmatSize, THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE);
const int nq = dR.cols();
typedef typename DerivedR::Scalar Scalar;
typedef typename Gradient<Eigen::Matrix<Scalar, RPY_SIZE, 1>, DerivedDR::ColsAtCompileTime>::type ReturnType;
ReturnType drpy(RPY_SIZE, nq);
auto dR11_dq = getSubMatrixGradient(dR, 0, 0, R.rows());
auto dR21_dq = getSubMatrixGradient(dR, 1, 0, R.rows());
auto dR31_dq = getSubMatrixGradient(dR, 2, 0, R.rows());
auto dR32_dq = getSubMatrixGradient(dR, 2, 1, R.rows());
auto dR33_dq = getSubMatrixGradient(dR, 2, 2, R.rows());
Scalar sqterm = R(2,1) * R(2,1) + R(2,2) * R(2,2);
using namespace std;
// droll_dq
drpy.row(0) = (R(2, 2) * dR32_dq - R(2, 1) * dR33_dq) / sqterm;
// dpitch_dq
Scalar sqrt_sqterm = sqrt(sqterm);
drpy.row(1) = (-sqrt_sqterm * dR31_dq + R(2, 0) / sqrt_sqterm * (R(2, 1) * dR32_dq + R(2, 2) * dR33_dq)) / (R(2, 0) * R(2, 0) + R(2, 1) * R(2, 1) + R(2, 2) * R(2, 2));
// dyaw_dq
sqterm = R(0, 0) * R(0, 0) + R(1, 0) * R(1, 0);
drpy.row(2) = (R(0, 0) * dR21_dq - R(1, 0) * dR11_dq) / sqterm;
return drpy;
}
示例8: jacobian
void jacobian(const double t, const std::vector<double>& y,
Eigen::MatrixBase<Derived1>& dy_dt,
Eigen::MatrixBase<Derived2>& Jy,
Eigen::MatrixBase<Derived2>& Jtheta) const {
using Eigen::Dynamic;
using Eigen::Map;
using Eigen::Matrix;
using Eigen::RowVectorXd;
using stan::math::var;
using std::vector;
vector<double> grad(y.size() + theta_.size());
Map<RowVectorXd> grad_eig(&grad[0], y.size() + theta_.size());
try {
start_nested();
vector<var> y_var(y.begin(), y.end());
vector<var> theta_var(theta_.begin(), theta_.end());
vector<var> z_var;
z_var.reserve(y.size() + theta_.size());
z_var.insert(z_var.end(), y_var.begin(), y_var.end());
z_var.insert(z_var.end(), theta_var.begin(), theta_var.end());
vector<var> dy_dt_var = f_(t, y_var, theta_var, x_, x_int_, msgs_);
for (size_t i = 0; i < dy_dt_var.size(); ++i) {
dy_dt(i) = dy_dt_var[i].val();
set_zero_all_adjoints_nested();
dy_dt_var[i].grad(z_var, grad);
Jy.row(i) = grad_eig.leftCols(y.size());
Jtheta.row(i) = grad_eig.rightCols(theta_.size());
}
} catch (const std::exception& e) {
recover_memory_nested();
throw;
}
stan::math::recover_memory_nested();
}
示例9:
void MSF_MeasurementBase<EKFState_T>::calculateAndApplyCorrection(
shared_ptr<EKFState_T> state, MSF_Core<EKFState_T>& core,
const Eigen::MatrixBase<H_type>& H_delayed,
const Eigen::MatrixBase<Res_type> & res_delayed,
const Eigen::MatrixBase<R_type>& R_delayed) {
EIGEN_STATIC_ASSERT_FIXED_SIZE (H_type);
EIGEN_STATIC_ASSERT_FIXED_SIZE (R_type);
// Get measurements.
/// Correction from EKF update.
Eigen::Matrix<double, MSF_Core<EKFState_T>::nErrorStatesAtCompileTime, 1> correction_;
R_type S;
Eigen::Matrix<double, MSF_Core<EKFState_T>::nErrorStatesAtCompileTime,
R_type::RowsAtCompileTime> K;
typename MSF_Core<EKFState_T>::ErrorStateCov & P = state->P;
S = H_delayed * P * H_delayed.transpose() + R_delayed;
K = P * H_delayed.transpose() * S.inverse();
correction_ = K * res_delayed;
const typename MSF_Core<EKFState_T>::ErrorStateCov KH =
(MSF_Core<EKFState_T>::ErrorStateCov::Identity() - K * H_delayed);
P = KH * P * KH.transpose() + K * R_delayed * K.transpose();
// Make sure P stays symmetric.
P = 0.5 * (P + P.transpose());
core.applyCorrection(state, correction_);
}
示例10: internal_angles_using_edge_lengths
IGL_INLINE void igl::internal_angles_using_edge_lengths(
const Eigen::MatrixBase<DerivedL>& L,
Eigen::PlainObjectBase<DerivedK> & K)
{
// Note:
// Usage of internal_angles_using_squared_edge_lengths() is preferred to internal_angles_using_squared_edge_lengths()
// This function is deprecated and probably will be removed in future versions
typedef typename DerivedL::Index Index;
assert(L.cols() == 3 && "Edge-lengths should come from triangles");
const Index m = L.rows();
K.resize(m,3);
parallel_for(
m,
[&L,&K](const Index f)
{
for(size_t d = 0;d<3;d++)
{
const auto & s1 = L(f,d);
const auto & s2 = L(f,(d+1)%3);
const auto & s3 = L(f,(d+2)%3);
K(f,d) = acos((s3*s3 + s2*s2 - s1*s1)/(2.*s3*s2));
}
},
1000l);
}
示例11: project_to_line_segment
IGL_INLINE void igl::project_to_line_segment(
const Eigen::MatrixBase<DerivedP> & P,
const Eigen::MatrixBase<DerivedS> & S,
const Eigen::MatrixBase<DerivedD> & D,
Eigen::PlainObjectBase<Derivedt> & t,
Eigen::PlainObjectBase<DerivedsqrD> & sqrD)
{
project_to_line(P,S,D,t,sqrD);
const int np = P.rows();
// loop over points and fix those that projected beyond endpoints
#pragma omp parallel for if (np>10000)
for(int p = 0;p<np;p++)
{
const DerivedP Pp = P.row(p);
if(t(p)<0)
{
sqrD(p) = (Pp-S).squaredNorm();
t(p) = 0;
}else if(t(p)>1)
{
sqrD(p) = (Pp-D).squaredNorm();
t(p) = 1;
}
}
}
示例12: hessian
IGL_INLINE void igl::hessian(
const Eigen::MatrixBase<DerivedV> & V,
const Eigen::MatrixBase<DerivedF> & F,
Eigen::SparseMatrix<Scalar>& H)
{
typedef typename DerivedV::Scalar denseScalar;
typedef typename Eigen::Matrix<denseScalar, Eigen::Dynamic, 1> VecXd;
typedef typename Eigen::SparseMatrix<Scalar> SparseMat;
typedef typename Eigen::DiagonalMatrix
<Scalar, Eigen::Dynamic, Eigen::Dynamic> DiagMat;
int dim = V.cols();
assert((dim==2 || dim==3) &&
"The dimension of the vertices should be 2 or 3");
//Construct the combined gradient matric
SparseMat G;
igl::grad(Eigen::PlainObjectBase<DerivedV>(V),
Eigen::PlainObjectBase<DerivedF>(F),
G, false);
SparseMat GG(F.rows(), dim*V.rows());
GG.reserve(G.nonZeros());
for(int i=0; i<dim; ++i)
GG.middleCols(i*G.cols(),G.cols()) = G.middleRows(i*F.rows(),F.rows());
SparseMat D;
igl::repdiag(GG,dim,D);
//Compute area matrix
VecXd areas;
igl::doublearea(V, F, areas);
DiagMat A = (0.5*areas).replicate(dim,1).asDiagonal();
//Compute FEM Hessian
H = D.transpose()*A*G;
}
示例13: checkRange
bool checkRange(const Eigen::MatrixBase<DerivedA>& mm,
typename DerivedA::Scalar minVal, typename DerivedA::Scalar maxVal)
{
assert(minVal < maxVal);
// Go through each element in the matrix and ensure they are not
// NaN and fall within the specified min and max values.
for (int ii = 0; ii < mm.rows(); ii++)
{
for (int jj = 0; jj < mm.cols(); jj++)
{
if (std::isnan(mm(ii, jj)))
{
std::stringstream ss;
ss << "NaN detected at index (" << ii << ", " << jj << "), returning false!";
ROS_WARN_STREAM(ss.str());
return false;
}
if (mm(ii, jj) > maxVal || mm(ii, jj) < minVal)
{
std::stringstream ss;
ss << "Value of out range at index (" << ii << ", " << jj << "), returning false.\n"
" - value = " << mm(ii, jj) << "\n"
" - minVal = " << minVal << "\n"
" - maxVal = " << maxVal;
ROS_WARN_STREAM(ss.str());
return false;
}
}
}
return true;
}
示例14: set_block_imag
void SLHA_io::set_block_imag(const std::string& name,
const Eigen::MatrixBase<Derived>& matrix,
const std::string& symbol, double scale)
{
std::ostringstream ss;
ss << "Block " << name;
if (scale != 0.)
ss << " Q= " << FORMAT_SCALE(scale);
ss << '\n';
const int rows = matrix.rows();
const int cols = matrix.cols();
for (int i = 1; i <= rows; ++i) {
if (cols == 1) {
ss << boost::format(vector_formatter) % i % Im(matrix(i-1,0))
% ("Im(" + symbol + "(" + ToString(i) + "))");
} else {
for (int k = 1; k <= cols; ++k) {
ss << boost::format(mixing_matrix_formatter) % i % k % Im(matrix(i-1,k-1))
% ("Im(" + symbol + "(" + ToString(i) + "," + ToString(k) + "))");
}
}
}
set_block(ss);
}
示例15: read_vector
double SLHA_io::read_vector(const std::string& block_name, Eigen::MatrixBase<Derived>& vector) const
{
if (vector.cols() != 1) throw SetupError("Vector has more than 1 column");
auto block = data.find(data.cbegin(), data.cend(), block_name);
const int rows = vector.rows();
double scale = 0.;
while (block != data.cend()) {
for (const auto& line: *block) {
if (!line.is_data_line()) {
// read scale from block definition
if (line.size() > 3 &&
to_lower(line[0]) == "block" && line[2] == "Q=")
scale = convert_to<double>(line[3]);
continue;
}
if (line.size() >= 2) {
const int i = convert_to<int>(line[0]) - 1;
if (0 <= i && i < rows) {
const double value = convert_to<double>(line[1]);
vector(i,0) = value;
}
}
}
++block;
block = data.find(block, data.cend(), block_name);
}
return scale;
}