本文整理汇总了C++中Transform3f::translation方法的典型用法代码示例。如果您正苦于以下问题:C++ Transform3f::translation方法的具体用法?C++ Transform3f::translation怎么用?C++ Transform3f::translation使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Transform3f
的用法示例。
在下文中一共展示了Transform3f::translation方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: computeFootIK
//.........这里部分代码省略.........
std::swap(hip_rx_angles[0], hip_rx_angles[1]);
std::swap(badness[0], badness[1]);
std::swap(flags[0], flags[1]);
}
int hip_solution_cnt = 2;
if (badness[0] == 0 && badness[1] != 0) {
hip_solution_cnt = 1;
}
debug << "hip_rx_angles[0]=" << hip_rx_angles[0]
<< ", badness=" << badness[0]
<< ", flags=" << flags[0] << "\n";
debug << "hip_rx_angles[1]=" << hip_rx_angles[1]
<< ", badness=" << badness[1]
<< ", flags=" << flags[1] << "\n";
debug << "hip_solution_cnt = " << hip_solution_cnt << "\n";
vec3f qfwd[2], qrear[2];
for (int i=0; i<hip_solution_cnt; ++i) {
debug << "** computing ll solution " << (i+1) << " of " << (hip_solution_cnt) << "\n";
float hip_rx = hip_rx_angles[i];
// now make inv. transform to get rid of hip rotation
Transform3f tx = Transform3f::rx(hip_rx, jo(_kc, leg, HIP_RX_OFFSET, _centeredFootIK));
vec3f ptx = tx.transformInv(orig);
debug << "tx=[" << tx.translation() << ", " << tx.rotation() << "], ptx = " << ptx << "\n";
// calculate lengths for cosine law
float l1sqr = ol2(_kc, leg, KNEE_RY_OFFSET, _centeredFootIK);
float l2sqr = ol2(_kc, leg, FOOT_OFFSET, _centeredFootIK);
float l1 = ol(_kc, leg, KNEE_RY_OFFSET, _centeredFootIK);
float l2 = ol(_kc, leg, FOOT_OFFSET, _centeredFootIK);
float ksqr = ptx[0]*ptx[0] + ptx[2]*ptx[2];
float k = sqrt(ksqr);
debug << "l1=" << l1 << ", l2=" << l2 << ", k=" << k << "\n";
// check triangle inequality
if (k > l1 + l2) {
debug << "oops, violated the triangle inequality for lower segments: "
<< "k = " << k << ", "
<< "l1 + l2 = " << l1 + l2 << "\n";
if (k - (l1 + l2) > 1e-4) {
flags[i] = flags[i] | IK_LOWER_DISTANCE;
}
k = l1 + l2;
ksqr = k * k;
}
// 2*theta is the acute angle formed by the spread
// of the two hip rotations...
float costheta = (l1sqr + ksqr - l2sqr) / (2 * l1 * k);
if (fabs(costheta) > 1) {
debug << "costheta = " << costheta << " > 1\n";
if (fabs(costheta) - 1 > 1e-4) {
flags[i] = flags[i] | IK_LOWER_DISTANCE;
}
示例2: testEllipsoid
/** \reimpl
*/
void
FeatureLabelSetGeometry::render(RenderContext& rc, double /* clock */) const
{
const float visibleSizeThreshold = 20.0f; // in pixels
// No need to draw anything if the labels are turned off with an opacity
// setting near 0.
if (ms_globalOpacity <= 0.01f)
{
return;
}
// Render during the opaque pass if opaque or during the translucent pass if not.
if (rc.pass() == RenderContext::TranslucentPass)
{
// Get the position of the camera in the body-fixed frame of the labeled object
Transform3f inv = Transform3f(rc.modelview().inverse(Affine)); // Assuming an affine modelview matrix
Vector3f cameraPosition = inv.translation();
float overallPixelSize = boundingSphereRadius() / (rc.pixelSize() * cameraPosition.norm());
// Only draw individual labels if the overall projected size of the set exceeds the threshold
if (overallPixelSize > visibleSizeThreshold)
{
// Labels are treated as either completely visible or completely occluded. A label is
// visible when the labeled point isn't blocked by the occluding ellipsoid.
AlignedEllipsoid testEllipsoid(m_occludingEllipsoid.semiAxes() * 0.999);
Vector3f ellipsoidSemiAxes = testEllipsoid.semiAxes().cast<float>();
Vector3f viewDir = -cameraPosition.normalized();
double distanceToEllipsoid = 0.0;
// Instead of computing the ellipsoid intersection (as the line below), just treat the planet as a sphere
//TestRayEllipsoidIntersection(cameraPosition, viewDir, ellipsoidSemiAxes, &distanceToEllipsoid);
distanceToEllipsoid = (cameraPosition.norm() - ellipsoidSemiAxes.maxCoeff()) * 0.99f;
// We don't want labels partially hidden by the planet ellipsoid, so we'll project them onto a
// plane that lies just in front of the planet ellipsoid and which is parallel to the view plane
Hyperplane<float, 3> labelPlane(viewDir, cameraPosition + viewDir * float(distanceToEllipsoid));
for (vector<Feature, Eigen::aligned_allocator<Feature> >::const_iterator iter = m_features.begin(); iter != m_features.end(); ++iter)
{
Vector3f r = iter->position - cameraPosition;
Vector3f labelPosition = labelPlane.projection(iter->position);
float k = -(labelPlane.normal().dot(cameraPosition) + labelPlane.offset()) / (labelPlane.normal().dot(r));
labelPosition = cameraPosition + k * r;
rc.pushModelView();
rc.translateModelView(labelPosition);
float featureDistance = rc.modelview().translation().norm();
float pixelSize = iter->size / (rc.pixelSize() * featureDistance);
float d = r.norm();
r /= d;
double t = 0.0;
TestRayEllipsoidIntersection(cameraPosition, r, ellipsoidSemiAxes, &t);
if (pixelSize > visibleSizeThreshold && d < t)
{
rc.drawEncodedText(Vector3f::Zero(), iter->label, m_font.ptr(), TextureFont::Utf8, iter->color, ms_globalOpacity);
}
rc.popModelView();
}
}
}
}