本文整理汇总了C++中TH1::SetMarkerColor方法的典型用法代码示例。如果您正苦于以下问题:C++ TH1::SetMarkerColor方法的具体用法?C++ TH1::SetMarkerColor怎么用?C++ TH1::SetMarkerColor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TH1
的用法示例。
在下文中一共展示了TH1::SetMarkerColor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: overlay_Merged_RecoSmeared
TCanvas* overlay_Merged_RecoSmeared(const vector<string>& folders,
const hist_t& h
)
{
TLegend *leg = new TLegend(0.6,0.65,0.9,0.9);
leg->SetTextFont(42);
vector<TH1*> hists;
vector<string> jetcoll;
jetcoll.push_back("reco");
jetcoll.push_back("gen");
jetcoll.push_back("smeared");
stringstream title;
const string njets("3-5");
//const string eta("2.5");
const string eta("5.0");
title << njets
<< " Jets, MHT from Jets with P_{T}>30 GeV, |#eta |<"
<< eta << ", L = 10 fb^{-1}" << ";" << h.title ;
for (unsigned j=0; j< jetcoll.size(); ++j)
{
TH1* Hist = 0;
for (unsigned i = 0; i < folders.size(); ++i)
{
stringstream histname;
histname << folders.at(i) << "/" << jetcoll.at(j) << h.name;
cout << __LINE__ << ": Looking for hist: " << histname.str().c_str() << endl;
TH1* htemp = GetHist(histname.str());
if (Hist == 0) Hist = htemp;
else Hist->Add(htemp);
}
Hist->Rebin(h.rebin);
Hist->SetTitle(title.str().c_str());
Hist->SetMarkerStyle(20+j);
Hist->SetLineWidth(2);
Hist->SetStats(0);
stringstream legname;
if (j==0)
{
legname << "Reco";
} else if (j==1)
{
legname << "Gen";
Hist->SetLineColor(kBlue);
Hist->SetMarkerColor(kBlue);
} else if (j==2)
{
legname << "Smeared";
Hist->SetLineColor(kRed);
Hist->SetMarkerColor(kRed);
}
const double sum = Hist->Integral();
legname << " (" << sum << ")";
if (j!=1) leg->AddEntry(Hist, legname.str().c_str());
hists.push_back(Hist);
} //end jetcoll
TH1* ratio = dynamic_cast<TH1*> (hists.at(2)->Clone("ratio"));
ratio->GetYaxis()->SetTitle("Smeared/Reco");
ratio->SetTitle("");
ratio->Divide(hists.at(0));
ratio->GetYaxis()->SetRangeUser(-0.01,2.01);
//ratio->SetTickLength (+0.01,"Y");
//TCanvas *c1 = new TCanvas("c1", "c1",15,60,550,600);
TCanvas *c1 = new TCanvas("c1");
c1->Range(0,0,1,1);
c1->SetBorderSize(2);
c1->SetFrameFillColor(0);
// ------------>Primitives in pad: c1_1
TPad *c1_1 = new TPad("c1_1", "c1_1",0.01,0.30,0.99,0.99);
c1_1->Draw();
c1_1->cd();
c1_1->SetBorderSize(2);
c1_1->SetTickx(1);
c1_1->SetTicky(1);
c1_1->SetTopMargin(0.1);
c1_1->SetBottomMargin(0.0);
//c1_1->SetFrameFillColor(3);
c1_1->SetLogy();
hists.at(0)->GetYaxis()->CenterTitle(1);
hists.at(0)->SetLabelFont(42,"XYZ");
hists.at(0)->SetTitleFont(42,"XYZ");
hists.at(0)->GetYaxis()->SetTitleOffset(0.8);
hists.at(0)->SetLabelSize(0.05,"XYZ");
hists.at(0)->SetTitleSize(0.06,"XYZ");
hists.at(0)->Draw("P");
hists.at(2)->Draw("same P");
leg->Draw();
//.........这里部分代码省略.........
示例2: check1SLimits
void check1SLimits(
const char* workDir, // workDir: usual tag where to look for files in Output
const char* lFileName="cLimits_683_NominalABCD_Asym_2SPL_woSyst.csv", // file name to save limits results
bool dosyst = false,
int mode = 1, // mode=0 -> pass, mode=1 -> prompt, mode=2 -> nonprompt
const char* workDirFail=""
)
{
TString slFileName(lFileName);
if ( dosyst && !slFileName.Contains("wSys") )
{
cout << "Comparison requires systematics but limits file does not contain them" << endl;
return;
}
// list of files
set<anabin> thebins = allbins();
const char* ppp = "../Fitter";
// systematic uncertainties for fit
map<anabin, syst> syst_All;
if ( dosyst )
{
if (mode==0) syst_All = readSyst_all_pass("",ppp,workDir);
if (mode==1) syst_All = readSyst_all_prompt("",ppp,workDir,workDirFail);
if (mode==2) syst_All = readSyst_all_nonprompt("",ppp,workDir,workDirFail);
}
// bin edges
float ptmin, ptmax, ymin, ymax, centmin, centmax;
// histo for 1sigma limits checks
TH1* hCL = new TH1D("hOneSigmaCLComparison","",thebins.size(),0,thebins.size());
hCL->GetYaxis()->SetTitle("CL_{1#sigma}/#sigma");
hCL->GetYaxis()->SetTitleOffset(1.15);
hCL->SetStats(0);
hCL->SetDirectory(0);
hCL->SetMarkerColor(1);
hCL->SetMarkerStyle(20);
hCL->SetMarkerSize(1);
hCL->SetLineColor(1);
TLine* l1 = new TLine(0.,1.,hCL->GetXaxis()->GetXmax(),1.);
l1->SetLineWidth(3);
hCL->GetListOfFunctions()->Add(l1);
map<anabin,limits> maplim = readLimits(Form("csv/%s",slFileName.Data()));
int cnt=1;
for (set<anabin>::const_iterator it=thebins.begin(); it!=thebins.end(); it++)
{
cout << "Checking 1 sigma limits for analysis bin " << cnt << endl;
anabin thebin = *it;
ptmin = thebin.ptbin().low();
ptmax = thebin.ptbin().high();
ymin = thebin.rapbin().low();
ymax = thebin.rapbin().high();
centmin = thebin.centbin().low();
centmax = thebin.centbin().high();
double sigmaDoubleR = 0;
double doubleR = 0;
if (mode==0) {
doubleR = doubleratio_pass_nominal(workDir,thebin,ppp);
sigmaDoubleR = doubleratio_pass_stat(workDir,thebin,ppp);
}
if (mode==1) {
doubleR = doubleratio_prompt_nominal(workDir,workDirFail,thebin,ppp);
sigmaDoubleR = doubleratio_prompt_stat(workDir,workDirFail,thebin,ppp);
}
if (mode==2) {
doubleR = doubleratio_nonprompt_nominal(workDir,workDirFail,thebin,ppp);
sigmaDoubleR = doubleratio_nonprompt_stat(workDir,workDirFail,thebin,ppp);
}
double systAll=0;
if ( dosyst )
{
systAll = syst_All[thebin].value_dR;
sigmaDoubleR = sqrt(pow(sigmaDoubleR,2)+pow(systAll,2));
}
limits lim = maplim[thebin];
TString binName(Form("Pt[%.1f,%.1f]-Y[%.1f,%.1f]-C[%.1f,%.1f]",ptmin,ptmax,ymin,ymax,centmin,centmax));
double comp = -1.;
if ( sigmaDoubleR != 0 ) comp = (lim.val.second-lim.val.first)/(2.*sigmaDoubleR);
hCL->SetBinContent(cnt,comp);
hCL->GetXaxis()->SetBinLabel(cnt,binName.Data());
cnt++;
} // loop on the files
TFile* fSave = new TFile("oneSigmaCLComparison.root","RECREATE");
TCanvas* c = new TCanvas("cOneSigmaCLComparison","",90,116,1265,535);
c->Range(-3.690909,-0.01066472,33.30606,0.01252061);
//.........这里部分代码省略.........
示例3: TCanvas
TH1 *
UnfoldMe_MB2(const Char_t *data, const Char_t *mc, const Char_t *anatag, Int_t bin, Bool_t useMBcorr , Bool_t usecorrfit , Bool_t ismc , Float_t smooth , Int_t iter , Int_t regul , Float_t weight , Bool_t bayesian , Int_t nloop )
{
// MF comments:
// usedMBcorr: changes the matrix used for unfonding, from effMatrix to bin matrix (I think this is just to use mult dependent v s mb correction_)
// usecorrfit: if I understand correctly, fits the response matrix and uses fit to extrapolate it
TFile *fdt =0;
if (ismc)
fdt = TFile::Open(data);
else
fdt = TFile::Open(data);
TFile *fmc = TFile::Open(mc);
TList *ldt = (TList *)fdt->Get(Form("%s", anatag));
TList *lmc = (TList *)fmc->Get(Form("%s", anatag));
TH2 *hmatdt = (TH2 *)ldt->FindObject(Form(responseMatrix, bin));
TH2 *hmatmc = 0;
if (useMBcorr){
hmatmc = (TH2 *)lmc->FindObject("effMatrix");
std::cout << "USING MB" << std::endl;
}
else {
hmatmc = (TH2 *)lmc->FindObject(Form(responseMatrix, bin));
}
TH1 *hdata = hmatdt->ProjectionY("hdata");
// TH1 *hdata = hmatdt->ProjectionY("htrue"); // For truth Only Calculations
hdata->Sumw2();
hdata->SetBinContent(1, 0.);
hdata->SetBinError(1, 0.);
// hdata->Scale(1. / hdata->Integral());
hdata->SetMarkerStyle(25);
TH1 *htrue = hmatdt->ProjectionX("htrue");
htrue->Sumw2();
// htrue->Scale(1. / htrue->Integral());
htrue->SetMarkerStyle(7);
htrue->SetMarkerColor(2);
htrue->SetBinContent(1, 0.);
htrue->SetBinError(1, 0.);
TH2 *hcorr = (TH2 *)hmatmc->Clone("hcorr");
TH1 *hinit = (TH1 *)hdata->Clone("hinit");
TH1 *hresu = (TH1 *)hdata->Clone("hresu");
TH1 *hbias = (TH1 *)hdata->Clone("hbias");
hresu->SetMarkerStyle(20);
hresu->SetMarkerColor(4);
hresu->Reset();
TH1 *hnum = hcorr->ProjectionY("hnum");
TH1 *hden = hcorr->ProjectionY("hden");
TH1 *heff = hcorr->ProjectionY("heff");
hnum->Reset();
hnum->Sumw2();
hden->Reset();
hden->Sumw2();
heff->Reset();
for (Int_t i = 0; i < heff->GetNbinsX(); i++) {
Float_t int1 = hcorr->Integral(i + 1, i + 1, 0, -1);
if (int1 <= 0.) continue;
Float_t int2 = hcorr->Integral(i + 1, i + 1, 2, -1);
hnum->SetBinContent(i + 1, int2);
hnum->SetBinError(i + 1, TMath::Sqrt(int2));
hden->SetBinContent(i + 1, int1);
hden->SetBinError(i + 1, TMath::Sqrt(int1));
}
TCanvas *cEfficiency = new TCanvas("cEfficiency", "cEfficiency");
cEfficiency->SetLogx();
cEfficiency->SetLogy();
heff->Divide(hnum, hden, 1., 1., "B");
heff->Draw();
#if 0
for (Int_t ii = 0; ii < heff->GetNbinsX(); ii++) {
heff->SetBinContent(ii + 1, 1.);
heff->SetBinError(ii + 1, 0.);
}
#endif
for (Int_t i = 0; i < hcorr->GetNbinsX(); i++) {
hcorr->SetBinContent(i + 1, 1, 0.);
hcorr->SetBinError(i + 1, 1, 0.);
}
for (Int_t i = 0; i < hcorr->GetNbinsY(); i++) {
hcorr->SetBinContent(1, i + 1, 0.);
hcorr->SetBinError(1, i + 1, 0.);
}
TH2 *hcorrfit = ReturnCorrFromFit(hcorr);
// Docs from AliUnfolding
//Int_t AliUnfolding::Unfold(TH2* correlation, TH1* efficiency, TH1* measured, TH1* initialConditions, TH1* result, Bool_t check)
// unfolds with unfolding method fgMethodType
//
// parameters:
// correlation: response matrix as measured vs. generated
// efficiency: (optional) efficiency that is applied on the unfolded spectrum, i.e. it has to be in unfolded variables. If 0 no efficiency is applied.
//.........这里部分代码省略.........
示例4: makeHist
//.........这里部分代码省略.........
}
if (title.length()>0)
{
hreco->SetTitle(title.c_str());
hsmear->SetTitle(title.c_str());
hgen->SetTitle(title.c_str());
}
if (xmin != LargeNegNum || xmax != LargeNegNum)
{
hreco->GetXaxis()->SetRangeUser(xmin,xmax);
hsmear->GetXaxis()->SetRangeUser(xmin,xmax);
hgen->GetXaxis()->SetRangeUser(xmin,xmax);
}
const double reco_max_y = hreco->GetBinContent(hreco->GetMaximumBin());
const double smear_max_y = hsmear->GetBinContent(hsmear->GetMaximumBin());
const double y_max = max(reco_max_y, smear_max_y);
double y_min = 9999.0;
for (unsigned bin=1; bin<hreco->GetNbinsX(); ++bin)
{
const double v1 = hreco->GetBinContent(bin);
const double v2 = hsmear->GetBinContent(bin);
const double minv = min(v1,v2);
if (minv != 0 && minv < y_min) y_min = minv;
}
cout << hreco->GetName() << "->ymin/max = " << y_min << "(" << y_min/2.0 << ")/" << y_max << "(" << y_max*2.0 << ")" << endl;
hreco->GetYaxis()->SetRangeUser(y_min/2.0, y_max*2.0);
hsmear->GetYaxis()->SetRangeUser(y_min/2.0, y_max*2.0);
hgen->SetLineColor(kBlue);
hgen->SetMarkerColor(kBlue);
hgen->SetMarkerStyle(24);
hgen->SetLineWidth(2);
hsmear->SetLineColor(kRed);
hsmear->SetMarkerColor(kRed);
hsmear->SetMarkerStyle(24);
hsmear->SetLineWidth(2);
hreco->SetLineWidth(2);
hreco->SetMarkerStyle(kDot);
hreco->SetLineColor(kBlack);
hreco->SetMarkerColor(kBlack);
//hreco->GetXaxis()->SetRangeUser(0,300);
//hsmear->GetXaxis()->SetRangeUser(0,300);
hreco->GetYaxis()->CenterTitle(1);
hreco->SetLabelFont(42,"XYZ");
hreco->SetTitleFont(42,"XYZ");
hreco->GetYaxis()->SetTitleOffset(0.8);
hreco->SetLabelSize(0.05,"XYZ");
hreco->SetTitleSize(0.06,"XYZ");
TH1 *hsmeartoreco_ratio = (TH1*) (hsmear->Clone("hsmear_copy"));
hsmeartoreco_ratio->Divide(hreco);
hsmeartoreco_ratio->SetTitle("");
hsmeartoreco_ratio->GetYaxis()->SetTitle("Smear/Reco");
hsmeartoreco_ratio->GetYaxis()->SetRangeUser(0,2.);
hsmeartoreco_ratio->GetYaxis()->SetTitleOffset(0.4);
hsmeartoreco_ratio->GetXaxis()->SetTitleOffset(0.9);
hsmeartoreco_ratio->GetYaxis()->CenterTitle(1);
hsmeartoreco_ratio->GetXaxis()->CenterTitle(1);
示例5: setHistStyle
//------------------------------------------------------------------------------
void PlotAlignmentValidation::setHistStyle( TH1& hist,const char* titleX, const char* titleY, int color)
{
std::stringstream titel_Xaxis;
std::stringstream titel_Yaxis;
TString titelXAxis=titleX;
TString titelYAxis=titleY;
if ( titelXAxis.Contains("Phi") )titel_Xaxis<<titleX<<"[rad]";
else if( titelXAxis.Contains("meanX") )titel_Xaxis<<"#LTx'_{pred}-x'_{hit}#GT[cm]";
else if( titelXAxis.Contains("meanY") )titel_Xaxis<<"#LTy'_{pred}-y'_{hit}#GT[cm]";
else if( titelXAxis.Contains("rmsX") )titel_Xaxis<<"RMS(x'_{pred}-x'_{hit})[cm]";
else if( titelXAxis.Contains("rmsY") )titel_Xaxis<<"RMS(y'_{pred}-y'_{hit})[cm]";
else if( titelXAxis.Contains("meanNormX") )titel_Xaxis<<"#LTx'_{pred}-x'_{hit}/#sigma#GT";
else if( titelXAxis.Contains("meanNormY") )titel_Xaxis<<"#LTy'_{pred}-y'_{hit}/#sigma#GT";
else if( titelXAxis.Contains("rmsNormX") )titel_Xaxis<<"RMS(x'_{pred}-x'_{hit}/#sigma)";
else if( titelXAxis.Contains("rmsNormY") )titel_Xaxis<<"RMS(y'_{pred}-y'_{hit}/#sigma)";
else if( titelXAxis.Contains("meanLocalX") )titel_Xaxis<<"#LTx_{pred}-x_{hit}#GT[cm]";
else if( titelXAxis.Contains("rmsLocalX") )titel_Xaxis<<"RMS(x_{pred}-x_{hit})[cm]";
else if( titelXAxis.Contains("meanNormLocalX") )titel_Xaxis<<"#LTx_{pred}-x_{hit}/#sigma#GT[cm]";
else if( titelXAxis.Contains("rmsNormLocalX") )titel_Xaxis<<"RMS(x_{pred}-x_{hit}/#sigma)[cm]";
else if( titelXAxis.Contains("medianX") )titel_Xaxis<<"median(x'_{pred}-x'_{hit})[cm]";
else if( titelXAxis.Contains("medianY") )titel_Xaxis<<"median(y'_{pred}-y'_{hit})[cm]";
else titel_Xaxis<<titleX<<"[cm]";
if (hist.IsA()->InheritsFrom( TH1F::Class() ) )hist.SetLineColor(color);
if (hist.IsA()->InheritsFrom( TProfile::Class() ) ) {
hist.SetMarkerStyle(20);
hist.SetMarkerSize(0.8);
hist.SetMarkerColor(color);
}
hist.GetXaxis()->SetTitle( (titel_Xaxis.str()).c_str() );
hist.GetXaxis()->SetTitleSize ( 0.05 );
hist.GetXaxis()->SetTitleColor ( 1 );
hist.GetXaxis()->SetTitleOffset( 1.2 );
hist.GetXaxis()->SetTitleFont ( 62 );
hist.GetXaxis()->SetLabelSize ( 0.05 );
hist.GetXaxis()->SetLabelFont ( 62 );
//hist.GetXaxis()->CenterTitle ( );
hist.GetXaxis()->SetNdivisions ( 505 );
if /*( titelYAxis.Contains("meanX") )titel_Yaxis<<"#LTx'_{pred}-x'_{hit}#GT[cm]";
else if ( titelYAxis.Contains("rmsX") )titel_Yaxis<<"RMS(x'_{pred}-x'_{hit})[cm]";
else if( titelYAxis.Contains("meanNormX") )titel_Yaxis<<"#LTx'_{pred}-x'_{hit}/#sigma#GT";
else if( titelYAxis.Contains("rmsNormX") )titel_Yaxis<<"RMS(x_'{pred}-x'_{hit}/#sigma)";
else if( titelYAxis.Contains("meanLocalX") )titel_Yaxis<<"#LTx_{pred}-x_{hit}#GT[cm]";
else if( titelYAxis.Contains("rmsLocalX") )titel_Yaxis<<"RMS(x_{pred}-x_{hit})[cm]";
else if*/ ( (titelYAxis.Contains("layer") && titelYAxis.Contains("subDetId"))
|| titelYAxis.Contains("#modules") )titel_Yaxis<<"#modules";
else if ( (titelYAxis.Contains("ring") && titelYAxis.Contains("subDetId"))
|| titelYAxis.Contains("#modules") )titel_Yaxis<<"#modules";
else titel_Yaxis<<titleY<<"[cm]";
hist.GetYaxis()->SetTitle( (titel_Yaxis.str()).c_str() );
//hist.SetMinimum(1);
hist.GetYaxis()->SetTitleSize ( 0.05 );
hist.GetYaxis()->SetTitleColor ( 1 );
if ( hist.IsA()->InheritsFrom( TH2::Class() ) ) hist.GetYaxis()->SetTitleOffset( 0.95 );
else hist.GetYaxis()->SetTitleOffset( 1.2 );
hist.GetYaxis()->SetTitleFont ( 62 );
hist.GetYaxis()->SetLabelSize ( 0.03 );
hist.GetYaxis()->SetLabelFont ( 62 );
}
示例6: makePlot
void makePlot(TCanvas* canvas, const std::string& outputFileName, TTree* testTree, const std::string& varName,
unsigned numBinsX, double xMin, double xMax)
{
std::cout << "creating histogramTauIdPassed..." << std::endl;
TString histogramTauIdPassedName = TString("histogramTauIdPassed").Append("_").Append(varName.data());
TH1* histogramTauIdPassed = fillHistogram(testTree, varName, "type==1", "",
histogramTauIdPassedName.Data(), numBinsX, xMin, xMax);
std::cout << "--> histogramTauIdPassed = " << histogramTauIdPassed << ":"
<< " integral = " << histogramTauIdPassed->Integral() << std::endl;
std::cout << "creating histogramTauIdFailed..." << std::endl;
TString histogramTauIdFailedName = TString("histogramTauIdFailed").Append("_").Append(varName.data());
TH1* histogramTauIdFailed = fillHistogram(testTree, varName, "type==0", "",
histogramTauIdFailedName.Data(), numBinsX, xMin, xMax);
std::cout << "--> histogramTauIdFailed = " << histogramTauIdFailed
<< " integral = " << histogramTauIdFailed->Integral() << std::endl;
std::cout << "creating histogramTauIdDenominator..." << std::endl;
TString histogramTauIdDenominatorName = TString("histogramTauIdDenominator").Append("_").Append(varName.data());
TH1* histogramTauIdDenominator = new TH1F(histogramTauIdDenominatorName.Data(),
histogramTauIdDenominatorName.Data(), numBinsX, xMin, xMax);
histogramTauIdDenominator->Add(histogramTauIdPassed);
histogramTauIdDenominator->Add(histogramTauIdFailed);
std::cout << "--> histogramTauIdDenominator = " << histogramTauIdDenominator
<< " integral = " << histogramTauIdDenominator->Integral() << std::endl;
std::cout << "creating histogramFakeRate..." << std::endl;
TString histogramFakeRateName = TString("histogramFakeRate").Append("_").Append(varName.data());
TH1* histogramFakeRate = new TH1F(histogramFakeRateName.Data(),
histogramFakeRateName.Data(), numBinsX, xMin, xMax);
histogramFakeRate->Add(histogramTauIdPassed);
histogramFakeRate->Divide(histogramTauIdDenominator);
std::cout << "--> histogramFakeRate = " << histogramFakeRate
<< " integral = " << histogramFakeRate->Integral() << std::endl;
std::cout << "creating histogramFakeRateWeighted..." << std::endl;
TString histogramFakeRateWeightedName = TString("histogramFakeRateWeighted").Append("_").Append(varName.data());
TH1* histogramFakeRateWeighted = fillHistogram(testTree, varName, "", "MVA_KNN",
histogramFakeRateWeightedName.Data(), numBinsX, xMin, xMax);
histogramFakeRateWeighted->Divide(histogramTauIdDenominator);
std::cout << "--> histogramFakeRateWeighted = " << histogramFakeRateWeighted
<< " entries = " << histogramFakeRateWeighted->GetEntries() << ","
<< " integral = " << histogramFakeRateWeighted->Integral() << std::endl;
// Scale the weighted fake rate histogram
histogramFakeRate->SetTitle(varName.data());
histogramFakeRate->SetStats(false);
histogramFakeRate->SetMinimum(1.e-4);
histogramFakeRate->SetMaximum(1.e+1);
histogramFakeRate->SetLineColor(2);
histogramFakeRate->SetLineWidth(2);
histogramFakeRate->SetMarkerStyle(20);
histogramFakeRate->SetMarkerColor(2);
histogramFakeRate->SetMarkerSize(1);
histogramFakeRate->Draw("e1p");
histogramFakeRateWeighted->SetLineColor(4);
histogramFakeRateWeighted->SetLineWidth(2);
histogramFakeRateWeighted->SetMarkerStyle(24);
histogramFakeRateWeighted->SetMarkerColor(4);
histogramFakeRateWeighted->SetMarkerSize(1);
histogramFakeRateWeighted->Draw("e1psame");
TLegend legend(0.11, 0.73, 0.31, 0.89);
legend.SetBorderSize(0);
legend.SetFillColor(0);
legend.AddEntry(histogramFakeRate, "Tau id. discr.", "p");
legend.AddEntry(histogramFakeRateWeighted, "Fake-Rate weight", "p");
legend.Draw();
canvas->Update();
canvas->Print(outputFileName.data());
}
示例7: dNdEta_ThreeMethods_FullTrackingRebinned_DividedByMidRapidValue
void dNdEta_ThreeMethods_FullTrackingRebinned_DividedByMidRapidValue() {
//=========Macro generated from canvas: MyCanvas/MyCanvas
//========= (Thu Dec 10 11:52:00 2009) by ROOT version5.22/00d
gROOT->Reset();
gROOT->ProcessLine(".x rootlogon.C");
gStyle->SetTitleYOffset(1.4);
TCanvas *MyCanvas = new TCanvas("MyCanvas", "Final result",1,360,550,600);
TH1 *corr_result_all = new TH1D("corr_result_all","",14,-3.5,3.5);
corr_result_all->GetXaxis()->SetRange(2,13);
// ========================= Cluster Counting =======================
corr_result_all->SetBinContent(4,4.043821); // -2.0 to -1.5
corr_result_all->SetBinContent(5,3.821537); // -1.5 to -1.0
corr_result_all->SetBinContent(6,3.611029); // -1.0 to -0.5
corr_result_all->SetBinContent(7,3.501129); // -0.5 to 0.0
corr_result_all->SetBinContent(8,3.51732);
corr_result_all->SetBinContent(9,3.632249);
corr_result_all->SetBinContent(10,3.747706);
corr_result_all->SetBinContent(11,4.01596);
corr_result_all->SetBinError(4,0.177928124);
corr_result_all->SetBinError(5,0.168147628);
corr_result_all->SetBinError(6,0.158885276);
corr_result_all->SetBinError(7,0.154049676);
corr_result_all->SetBinError(8,0.15476208);
corr_result_all->SetBinError(9,0.159818956);
corr_result_all->SetBinError(10,0.164899064);
corr_result_all->SetBinError(11,0.17670224);
/*
corr_result_all->SetBinContent(4,3.954); // -2.0 to -1.5
corr_result_all->SetBinContent(5,3.770); // -1.5 to -1.0
corr_result_all->SetBinContent(6,3.607); // -1.0 to -0.5
corr_result_all->SetBinContent(7,3.548); // -0.5 to 0.0
corr_result_all->SetBinContent(8,3.567);
corr_result_all->SetBinContent(9,3.681);
corr_result_all->SetBinContent(10,3.791);
corr_result_all->SetBinContent(11,4.025);
corr_result_all->SetBinError(4,0.1779);
corr_result_all->SetBinError(5,0.1697);
corr_result_all->SetBinError(6,0.1623);
corr_result_all->SetBinError(7,0.1597);
corr_result_all->SetBinError(8,0.1605);
corr_result_all->SetBinError(9,0.1657);
corr_result_all->SetBinError(10,0.1706);
corr_result_all->SetBinError(11,0.1811);
*/
corr_result_all->SetMarkerStyle(20);
//corr_result_all->SetMarkerSize(1.5); // use rootlogon size
corr_result_all->SetMarkerColor(kRed);
corr_result_all->SetLineColor(2);
corr_result_all->GetYaxis()->SetTitle("dN_{ch}/d#eta/dN_{ch,mid}/d#eta");
corr_result_all->GetXaxis()->SetTitle("#eta");
corr_result_all->GetXaxis()->CenterTitle();
corr_result_all->GetYaxis()->CenterTitle();
corr_result_all->GetXaxis()->SetNdivisions(405);
//corr_result_all->GetYaxis()->SetNdivisions(1005);
corr_result_all->GetYaxis()->SetNdivisions(506);
Float_t midrapid = 0.5*(corr_result_all->GetBinContent(7)+corr_result_all->GetBinContent(8));
cout<<"mid rapid value = "<<midrapid<<endl;
corr_result_all->Scale(1/midrapid);
corr_result_all->SetMinimum(0.95);
corr_result_all->SetMaximum(1.3);
corr_result_all->Draw("pz");
// ======= YJ Tracklet three layer combination averaged (updated with dead modules..) ======
// 1 2 3 4 5 6 7 8 9 10 11 12
Double_t xAxis5[13] = {-3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3};
TH1 *hMeasuredFinal = new TH1D("hMeasuredFinal","",12, xAxis5);
hMeasuredFinal->SetBinContent(3,3.7459);
hMeasuredFinal->SetBinContent(4,3.65462);
hMeasuredFinal->SetBinContent(5,3.55475);
hMeasuredFinal->SetBinContent(6,3.45008);
hMeasuredFinal->SetBinContent(7,3.44329);
hMeasuredFinal->SetBinContent(8,3.5244);
hMeasuredFinal->SetBinContent(9,3.59575);
hMeasuredFinal->SetBinContent(10,3.6612);
hMeasuredFinal->SetBinError(3,0.142344);
hMeasuredFinal->SetBinError(4,0.138876);
hMeasuredFinal->SetBinError(5,0.13508);
hMeasuredFinal->SetBinError(6,0.131103);
hMeasuredFinal->SetBinError(7,0.130845);
hMeasuredFinal->SetBinError(8,0.133927);
//.........这里部分代码省略.........
开发者ID:CmsHI,项目名称:CVS_ASYoon,代码行数:101,代码来源:dNdEta_ThreeMethods_FullTrackingRebinned_DividedByMidRapidValue.C
示例8: moveDirHistsToStacks
void stackPlotter::moveDirHistsToStacks(TDirectory* tdir, TString histname, int color){
if(debug)
std::cout << "stackPlotter::moveDirHistsToStacks" << std::endl;
// get metainfo from directory, else exit TODO
metaInfo tMI;
tMI.extractFrom(tdir);
if(debug) {
std::cout << "stackPlotter::moveDirHistsToStacks || metaInfo color=" << tMI.color << std::endl;
std::cout << "stackPlotter::moveDirHistsToStacks || metaInfo legendname=" << tMI.legendname<< std::endl;
std::cout << "stackPlotter::moveDirHistsToStacks || metaInfo legendorder=" << tMI.legendorder << std::endl;
}
TIter histIter(tdir->GetListOfKeys());
TObject* cHistObj;
TKey* cHistKey;
if(debug)
std::cout << "stackPlotter::moveDirHistsToStacks || Iterating through histograms." << std::endl;
// loop through keys in the directory
while((cHistKey = (TKey*) histIter())) {
if(histname != cHistKey->GetName()) continue;
cHistObj=tdir->Get(cHistKey->GetName());
if(!cHistObj->InheritsFrom(TH1::Class())) continue;
if(debug)
std::cout << "stackPlotter::moveDirHistsToStacks || Found histogram "
<< cHistKey->GetName() << std::endl;
// prepare the histogram to be added to the stack
TH1* cHist = (TH1*) cHistObj->Clone();
cHist->SetDirectory(0);
TString mapName = cHist->GetName();
std::pair<Int_t,TH1*> newEntry(tMI.legendorder,cHist);
// initialize the stack info if needed
if(!stacksLegEntries_.count(mapName)) {
std::vector<std::pair<Int_t,TH1*> > legInfo(0);
legInfo.push_back(newEntry);
stacksLegEntries_[mapName] = legInfo;
}
cHist->SetFillColor(color);
cHist->SetFillStyle(1001);
cHist->SetMarkerStyle(kNone);
cHist->SetMarkerColor(kBlack);
cHist->SetLineColor(kBlack);
cHist->SetTitle(mapName);
cHist->SetName(tMI.legendname);
std::vector<std::pair<Int_t,TH1*> > legEntries = stacksLegEntries_[mapName];
if(debug)
std::cout << "stackPlotter::moveDirHistsToStacks || legEntries size is " << legEntries.size() << std::endl;
for(size_t i=0; i < legEntries.size(); i++) {
if(legEntries.at(i).second == cHist && legEntries.at(i).first == tMI.legendorder) break;
if(legEntries.at(i).first >= tMI.legendorder) {
if(debug)
std::cout << "stackPlotter::moveDirHistsToStacks || i is " << i << std::endl;
stacksLegEntries_[mapName].insert(stacksLegEntries_[mapName].begin()+i,newEntry);
break;
}
if(i==legEntries.size()-1) {
stacksLegEntries_[mapName].push_back(newEntry);
break;
}
}
if(debug)
std::cout << "stackPlotter::moveDirHistsToStacks || legEntries size is " << legEntries.size() << std::endl;
}
}
示例9: makePlot
//.........这里部分代码省略.........
bottomPad->SetBottomMargin(0.31);
bottomPad->SetRightMargin(0.05);
bottomPad->SetLogy(false);
canvas->cd();
topPad->Draw();
topPad->cd();
TAxis* xAxis_top = histogramData_density->GetXaxis();
xAxis_top->SetTitle(xAxisTitle.data());
xAxis_top->SetTitleOffset(xAxisOffset);
xAxis_top->SetLabelColor(10);
xAxis_top->SetTitleColor(10);
TAxis* yAxis_top = histogramData_density->GetYaxis();
yAxis_top->SetTitle(yAxisTitle.data());
yAxis_top->SetTitleOffset(yAxisOffset);
yAxis_top->SetTitleSize(0.085);
yAxis_top->SetLabelSize(0.05);
yAxis_top->SetTickLength(0.04);
TLegend* legend = new TLegend(0.66, 0.45, 0.94, 0.92, NULL, "brNDC");
legend->SetFillStyle(0);
legend->SetBorderSize(0);
legend->SetFillColor(10);
legend->SetTextSize(0.055);
histogramData_density->SetTitle("");
histogramData_density->SetStats(false);
histogramData_density->SetMaximum(yMax);
histogramData_density->SetMinimum(yMin);
histogramData_density->SetMarkerStyle(20);
histogramData_density->SetMarkerSize(2);
histogramData_density->SetMarkerColor(kBlack);
histogramData_density->SetLineColor(kBlack);
legend->AddEntry(histogramData_density, "Observed", "p");
histogramData_density->Draw("ep");
legend->AddEntry(histogramTTH_density, "t#bar{t}H", "l");
histogramTT_density->SetTitle("");
histogramTT_density->SetStats(false);
histogramTT_density->SetMaximum(yMax);
histogramTT_density->SetMinimum(yMin);
histogramTT_density->SetFillColor(kMagenta - 10);
legend->AddEntry(histogramTT_density, "t#bar{t}+jets", "f");
histogramTTV_density->SetFillColor(kOrange - 4);
legend->AddEntry(histogramTTV_density, "t#bar{t}+V", "f");
histogramEWK_density->SetFillColor(kRed + 2);
legend->AddEntry(histogramEWK_density, "EWK", "f");
histogramRares_density->SetFillColor(kBlue - 8);
legend->AddEntry(histogramRares_density, "Rares", "f");
THStack* histogramStack_density = new THStack("stack", "");
histogramStack_density->Add(histogramRares_density);
histogramStack_density->Add(histogramEWK_density);
histogramStack_density->Add(histogramTTV_density);
histogramStack_density->Add(histogramTT_density);
histogramStack_density->Draw("histsame");
histogramBgrUncertainty_density->SetFillColor(kBlack);
histogramBgrUncertainty_density->SetFillStyle(3344);
示例10: boostcontrolplots
void boostcontrolplots( TDirectory *boostdir ) {
const Int_t nPlots = 4;
Int_t width = 900;
Int_t height = 900;
char cn[100];
const TString titName = boostdir->GetName();
sprintf( cn, "cv_%s", titName.Data() );
TCanvas *c = new TCanvas( cn, Form( "%s Control Plots", titName.Data() ),
width, height );
c->Divide(2,3);
const TString titName = boostdir->GetName();
TString hname[nPlots]={"Booster_BoostWeight","Booster_MethodWeight","Booster_ErrFraction","Booster_OrigErrFraction"};
for (Int_t i=0; i<nPlots; i++){
Int_t color = 4;
TPad * cPad = (TPad*)c->cd(i+1);
TH1 *h = (TH1*) boostdir->Get(hname[i]);
TString plotname = h->GetName();
h->SetMaximum(h->GetMaximum()*1.3);
h->SetMinimum( 0 );
h->SetMarkerColor(color);
h->SetMarkerSize( 0.7 );
h->SetMarkerStyle( 24 );
h->SetLineWidth(2);
h->SetLineColor(color);
h->Draw();
c->Update();
}
// draw combined ROC plots
TString hname_roctest[2] ={"Booster_ROCIntegral_test", "Booster_ROCIntegralBoosted_test"};
TString hname_roctrain[2]={"Booster_ROCIntegral_train", "Booster_ROCIntegralBoosted_train"};
TString htitle[2] = {"ROC integral of single classifier", "ROC integral of boosted method"}
for (Int_t i=0; i<2; i++){
Int_t color = 4;
TPad * cPad = (TPad*)c->cd(nPlots+i+1);
TH1 *htest = (TH1*) boostdir->Get(hname_roctest[i]);
TH1 *htrain = (TH1*) boostdir->Get(hname_roctrain[i]);
// check if filled
Bool_t histFilled = (htest->GetMaximum() > 0 || htrain->GetMaximum() > 0);
htest->SetTitle(htitle[i]);
htest->SetMaximum(1.0);
htest->SetMinimum(0.0);
htest->SetMarkerColor(color);
htest->SetMarkerSize( 0.7 );
htest->SetMarkerStyle( 24 );
htest->SetLineWidth(2);
htest->SetLineColor(color);
htest->Draw();
htrain->SetMaximum(1.0);
htrain->SetMinimum(0.0);
htrain->SetMarkerColor(color-2);
htrain->SetMarkerSize( 0.7 );
htrain->SetMarkerStyle( 24 );
htrain->SetLineWidth(2);
htrain->SetLineColor(color-2);
htrain->Draw("same");
if (histFilled) {
TLegend *legend= new TLegend( cPad->GetLeftMargin(),
0.2 + cPad->GetBottomMargin(),
cPad->GetLeftMargin() + 0.6,
cPad->GetBottomMargin() );
legend->AddEntry(htest, TString("testing sample"), "L");
legend->AddEntry(htrain, TString("training sample (orig. weights)"), "L");
legend->SetFillStyle( 1 );
legend->SetBorderSize(1);
legend->SetMargin( 0.3 );
legend->Draw("same");
}
else {
TText* t = new TText();
t->SetTextSize( 0.056 );
t->SetTextColor( 2 );
t->DrawText( 1, 0.6, "Use MethodBoost option: \"DetailedMonitoring\" " );
t->DrawText( 1, 0.51, "to fill this histograms" );
}
c->Update();
}
// write to file
TString fname = Form( "plots/%s_ControlPlots", titName.Data() );
TMVAGlob::imgconv( c, fname );
}
示例11: makeEffToys
void makeEffToys(Int_t seed, TString veto="D") {
// r.SetSeed(seed);
r = RooRandom::randomGenerator();
r->SetSeed(seed);
TFile* fin = TFile::Open(veto+"veto_200.root");
TString fName("toys/"); fName+=seed; fName+="/"+veto+"veto_200.root";
TFile* fout = new TFile(fName,"RECREATE");
for(Int_t j=0; j<21; ++j) {
TString hName = "efficiency_"; hName+=j;
TString hName2 = "efficiencyHist_"; hName2+=j;
TEfficiency* hin = dynamic_cast<TEfficiency*>(fin->Get(hName));
TH1* hout = dynamic_cast<TH1*>(hin->GetTotalHistogram()->Clone(hName2));
std::vector<Int_t> corrBins;
Int_t n = hout->GetNbinsX();
for(Int_t i=0; i<n; ++i) {
Double_t eff = hin->GetEfficiency(i+1);
Double_t erm = hin->GetEfficiencyErrorLow(i+1);
Double_t erp = hin->GetEfficiencyErrorUp(i+1);
Bool_t fluctuate = kTRUE;
// don't fluctuate if the veto hasn't affected this bin
// also ignore the odd missing entry - not sure what causes these but they don't seem reasonable
if((eff > 0.99 && eff + erp > 0.999) //efficiency close to 1 and not significantly different
|| ((i<1 || hin->GetEfficiency(i) == 1) && (i>n-1 || hin->GetEfficiency(i+2) == 1))) { //single bin dip (careful with this one)
eff = 1;
fluctuate = kFALSE;
}
if(eff < 0.01 && eff - erm < 0.001) {//efficiency close to 0 and not significantly different
eff = 0;
fluctuate = kFALSE;
}
//otherwise we're fluctuating the bin
if(fluctuate) {
//if the errors are roughly symmetric then we can symmetrise them and introduce some correlation between neighbouring bins
//this is difficult to do with asymmetric errors so if asymmetry > 10% lets just ignore correlations
//note that a large asymmetry in neighbouring bins will also lead to same-sign fluctuations anyway
if((erm - erp) / (erm + erp) < 0.1) {
//correlation is more important than asymmetry
//add bin to the list to be fluctuated later
corrBins.push_back(i+1);
} else {
//asymmetry is more important than correlation
//first catch any cases on a limit (the previous checks for eff > 0.99 and eff < 0.01 should catch these but play it safe)
if(erm <= 0) {
//vary with a half Gaussian
eff += TMath::Abs(r->Gaus(0.,erp));
} else if(erp <= 0) {
//vary with a half Gaussian
eff -= TMath::Abs(r->Gaus(0.,erm));
} else {
//vary with a bifurcated Gaussian
RooRealVar effVar( "effVar", "",-1.,2.);
RooRealVar muVar( "muVar", "",eff);
RooRealVar sigmVar("sigmVar","",erm);
RooRealVar sigpVar("sigpVar","",erp);
RooBifurGauss pdf("pdf","",effVar,muVar,sigmVar,sigpVar);
RooDataSet* ds = pdf.generate(RooArgSet(effVar),1);
eff = ds->get(0)->getRealValue("effVar");
delete ds;
}
}
}
if(eff > 1.0) eff = 1.0; //std::cout << i << "\t" << eff << "\t" << erp << "\t" << erm << std::endl;
// std::cout << hin->GetEfficiency(i+1) << "\t" << eff << std::endl;
hout->SetBinContent(i+1, eff);
}
//now deal with the correlated efficiencies
Double_t corrFactor(0.01);
while(!doCorrelatedBinFluctuation(hin,hout,corrBins,corrFactor)) {
corrFactor /= 2.;
}
// std::cout << std::endl;
TCanvas c;
hin->Draw();
hout->SetMarkerColor(kRed);
hout->SetMarkerStyle(4);
hout->Draw("Psame");
TString pName = "plots/toys/"; pName+=seed; pName+="/"+veto+"veto_Q"; pName+=j; pName+=".pdf";
c.SaveAs(pName);
}
hout->Write();
//.........这里部分代码省略.........
示例12: MakePi0Analysis
//.........这里部分代码省略.........
TF1* fFitFinalRatio[binnum];
TF1* fFitFinalSignal[binnum];
TF1* fFitOnlyFitSignal[binnum];
for(Int_t i=0; i<binnum; i++){
Double_t bin_width = (bins[i+1]-bins[i]);
Double_t bin_mean = (bins[i+1]+bins[i])/2;
Int_t rebin = 1;
if(bin_mean>5.0){
rebin=10;
}
else{
rebin=5;
}
Int_t sproj_bin = hPi0A08->GetYaxis()->FindBin(bins[i]);
Int_t lproj_bin = hPi0A08->GetYaxis()->FindBin(bins[i+1])-1;
TH1* fHistBasicSame = (TH1*)hPi0A08 ->ProjectionX(Form("fHistBasicSame_No%d",i+1),sproj_bin,lproj_bin,"");
TH1* fHistBasicMix = (TH1*)hMixPi0A08->ProjectionX(Form("fHistBasicMix_No%d",i+1),sproj_bin,lproj_bin,"");
fHistBasicSame->Rebin(rebin);
fHistBasicMix->Rebin(rebin);
fHistBasicSame->Sumw2();
fHistBasicMix->Sumw2();
fHistBasicSame->GetYaxis()->SetTitle(Form("dN/dM per %.0f MeV/c^{2}",fHistBasicSame->GetBinWidth(1)*1000));
fHistBasicMix->GetYaxis()->SetTitle(Form("dN/dM per %.0f MeV/c^{2}",fHistBasicSame->GetBinWidth(1)*1000));
fHistBasicSame->GetXaxis()->SetRange(fHistBasicSame->GetXaxis()->FindBin(0.),fHistBasicSame->GetXaxis()->FindBin(0.3)-1);
fHistBasicMix->GetXaxis()->SetRange(fHistBasicSame->GetXaxis()->FindBin(0.),fHistBasicSame->GetXaxis()->FindBin(0.3)-1);
fHistBasicSame->SetMarkerStyle(20);
fHistBasicMix->SetMarkerStyle(24);
fHistBasicSame->SetMarkerColor(kBlack);
fHistBasicMix->SetMarkerColor(kBlue);
fHistBasicSame->SetLineColor(kBlack);
fHistBasicMix->SetLineColor(kBlue);
fHistFinalSame[i] = (TH1F*)fHistBasicSame->Clone();
fHistOnlyFitSignal[i] = (TH1F*)fHistBasicSame->Clone();
fHistOnlyFitSignal[i]->SetName(Form("fHistOnlyFitSignal_Pol%d_No%d",pol,i+1)+fitName[iFit]+tofName[itof]+modName[iMod]);
TH1F* fHistOnlyFit_Signal = (TH1F*)fHistOnlyFitSignal[i]->Clone();
TH1F* fHistOnlyFit_BG = (TH1F*)fHistOnlyFitSignal[i]->Clone();
TH1F* fHistRatio = (TH1F*)fHistBasicSame->Clone();
fHistRatio->Divide(fHistBasicMix);
fHistRatio->SetName(Form("cRatioSameBG_Pol%d_No%d",pol,i+1)+fitName[iFit]+tofName[itof]+modName[iMod]);
TH1F* fHistRatio_Signal = (TH1F*)fHistRatio->Clone();
TH1F* fHistRatio_BG = (TH1F*)fHistRatio->Clone();
Int_t ssignal_bin = fHistRatio_Signal->GetXaxis()->FindBin(signal_range_min);
Int_t lsignal_bin = fHistRatio_Signal->GetXaxis()->FindBin(signal_range_max);
Int_t sbg_bin = fHistRatio_BG->GetXaxis()->FindBin(bg_range_min);
Int_t lbg_bin = fHistRatio_BG->GetXaxis()->FindBin(bg_range_max);
for(Int_t j=ssignal_bin; j<lsignal_bin; ++j){
fHistRatio_BG->SetBinContent(j,0);
fHistRatio_BG->SetBinError(j,0);
fHistOnlyFit_BG->SetBinContent(j,0);
fHistOnlyFit_BG->SetBinError(j,0);
}
for(Int_t j=sbg_bin; j<ssignal_bin; ++j){
fHistRatio_Signal->SetBinContent(j,0);
示例13: bdtcontrolplots
void bdtcontrolplots( TDirectory *bdtdir ) {
const Int_t nPlots = 6;
Int_t width = 900;
Int_t height = 600;
char cn[100], cn2[100];
const TString titName = bdtdir->GetName();
sprintf( cn, "cv_%s", titName.Data() );
TCanvas *c = new TCanvas( cn, Form( "%s Control Plots", titName.Data() ),
width, height );
c->Divide(3,2);
TString hname[nPlots]={"BoostMonitor","BoostWeight","BoostWeightVsTree","ErrFractHist","NodesBeforePruning",titName+"_FOMvsIterFrame"};
Bool_t BoostMonitorIsDone=kFALSE;
for (Int_t i=0; i<nPlots; i++){
Int_t color = 4;
TPad * cPad;
cPad = (TPad*)c->cd(i+1);
TH1 *h = (TH1*) bdtdir->Get(hname[i]);
if (h){
h->SetMaximum(h->GetMaximum()*1.3);
h->SetMinimum( 0 );
h->SetMarkerColor(color);
h->SetMarkerSize( 0.7 );
h->SetMarkerStyle( 24 );
h->SetLineWidth(1);
h->SetLineColor(color);
if(hname[i]=="NodesBeforePruning")h->SetTitle("Nodes before/after pruning");
h->Draw();
if(hname[i]=="NodesBeforePruning"){
TH1 *h2 = (TH1*) bdtdir->Get("NodesAfterPruning");
h2->SetLineWidth(1);
h2->SetLineColor(2);
h2->Draw("same");
}
if(hname[i]=="BoostMonitor"){ // a plot only available in case DoBoostMontior option has bee set
TGraph *g = (TGraph*) bdtdir->Get("BoostMonitorGraph");
g->Draw("LP*");
BoostMonitorIsDone = kTRUE;
}
if(hname[i]==titName+"_FOMvsIterFrame"){ // a plot only available in case DoBoostMontior option has bee set
TGraph *g = (TGraph*) bdtdir->Get(titName+"_FOMvsIter");
g->Draw();
}
c->Update();
}
}
TCanvas *c2 = NULL;
if (BoostMonitorIsDone){
sprintf( cn2, "cv2_%s", titName.Data() );
c2 = new TCanvas( cn2, Form( "%s BoostWeights", titName.Data() ),
1200, 1200 );
c2->Divide(5,5);
Int_t ipad=1;
TIter keys( bdtdir->GetListOfKeys() );
TKey *key;
// gDirectory->ls();
while ( (key = (TKey*)keys.Next()) && ipad < 26) {
TObject *obj=key->ReadObj();
if (obj->IsA()->InheritsFrom(TH1::Class())){
TH1F *hx = (TH1F*)obj;
TString hname(Form("%s",obj->GetTitle()));
if (hname.Contains("BoostWeightsInTreeB")){
c2->cd(ipad++);
hx->SetLineColor(4);
hx->Draw();
hname.ReplaceAll("TreeB","TreeS");
bdtdir->GetObject(hname.Data(),hx);
if (hx) {
hx->SetLineColor(2);
hx->Draw("same");
}
}
c2->Update();
}
}
}
// write to file
TString fname = Form( "plots/%s_ControlPlots", titName.Data() );
TMVAGlob::imgconv( c, fname );
if (c2){
fname = Form( "plots/%s_ControlPlots2", titName.Data() );
TMVAGlob::imgconv( c2, fname );
}
TCanvas *c3 = NULL;
if (BoostMonitorIsDone){
//.........这里部分代码省略.........
示例14: set
histoBook* histoBook::set( string param, double p1, double p2, double p3, double p4 ){
transform(param.begin(), param.end(), param.begin(), ::tolower);
TH1* h = get( styling );
if ( h ){
if ( "linecolor" == param ){
h->SetLineColor( (int) p1 );
} else if ( "domain" == param ){
double min = p1;
double max = p2;
h->GetXaxis()->SetRangeUser( min, max );
} else if ( "dynamicdomain" == param ){
double thresh = p1;
int min = (int)p2;
int max = (int)p3;
int axis = (int)p4; // 1 = x, 2 = y
if ( 1 != axis && 2 != axis )
axis = 1;
if ( thresh >= 0) {
if ( -1 >= min )
min = h->FindFirstBinAbove( thresh, axis );
if ( -1 >= max )
max = h->FindLastBinAbove( thresh, axis );
}
if ( 1 == axis )
h->GetXaxis()->SetRange( min, max );
else if ( 2 == axis )
h->GetYaxis()->SetRange( min, max );
} else if ( "range" == param ){
double min = p1;
double max = p2;
h->GetYaxis()->SetRangeUser( min, max );
} else if ( "markercolor" == param ) {
h->SetMarkerColor( (int)p1 );
} else if ( "markerstyle" == param ) {
h->SetMarkerStyle( (int)p1 );
} else if ( "legend" == param ){
// p1 - alignmentX
// p2 - alignmentY
// p3 - width
// p4 - height
// make sure option is valid
if ( !(legendAlignment::center == p1 || legendAlignment::left == p1 || legendAlignment::right == p1) )
p1 = legendAlignment::best;
if ( !(legendAlignment::center == p2 || legendAlignment::top == p2 || legendAlignment::bottom == p2) )
p2 = legendAlignment::best;
placeLegend( p1, p2, p3, p4 );
} else if ( "numberofticks" == param ){
// p1 - # of primary divisions
// p2 - # of secondary divisions
// p3 - axis : 0 or 1 = x, 2 = y
if ( p2 == -1 )
p2 = 0;
if ( 2 == (int)p3 )
h->GetYaxis()->SetNdivisions( (int) p1, (int) p2, 0, true );
else
h->GetXaxis()->SetNdivisions( (int) p1, (int) p2, 0, true );
}
}
return this;
}
示例15: draw_output_data
void plotter::draw_output_data(TH1* output_, TH1* stat_, std::vector<TH1D*> truth_, std::vector<TString> legnames, bool norm, TString file_name){
TH1* output = (TH1*) output_->Clone("output");
TH1* stat = (TH1*) stat_->Clone("stat");
std::vector<TH1D*> truth;
for(auto t: truth_){
truth.push_back( (TH1D*) t->Clone() );
}
double max = output->GetMaximum();
for(auto t: truth){
if(t->GetMaximum() > max) max = t->GetMaximum();
}
double ymax = 1.5 * max;
TCanvas *c = new TCanvas("c","",600,600);
gPad->SetLeftMargin(0.15);
TGaxis::SetMaxDigits(3);
output->SetTitle(" ");
output->GetYaxis()->SetRangeUser(0., ymax);
output->GetXaxis()->SetTitle("Leading-jet mass [GeV]");
if(norm) output->GetYaxis()->SetTitle("#frac{1}{#sigma} #frac{d#sigma}{dm_{jet}} [#frac{1}{GeV}]");
else output->GetYaxis()->SetTitle("#frac{d#sigma}{dm_{jet}} [#frac{fb}{GeV}]");
output->GetYaxis()->SetTitleOffset(1.1);
output->GetXaxis()->SetTitleOffset(0.9);
output->GetYaxis()->SetTitleSize(0.05);
output->GetXaxis()->SetTitleSize(0.05);
output->GetYaxis()->SetNdivisions(505);
output->SetLineColor(kBlack);
output->SetMarkerColor(kBlack);
output->SetMarkerStyle(8);
output->SetMarkerSize(1);
output->Draw("E1");
stat->SetLineColor(kBlack);
stat->SetMarkerColor(kBlack);
stat->SetMarkerStyle(8);
stat->SetMarkerSize(1);
gStyle->SetEndErrorSize(5);
Color_t color[] = {kRed-4, kAzure+7, kGreen, 798};
Int_t style[] = {1, 2, 9, 7};
for(unsigned int i=0; i<truth.size(); i++){
truth[i]->SetLineWidth(3);
truth[i]->SetLineColor(color[i]);
truth[i]->SetLineStyle(style[i]);
truth[i]->Draw("HIST SAME");
}
stat->Draw("E1 SAME");
output->Draw("E1 SAME");
TLegend *l=new TLegend(0.55,0.67,0.85,0.87);
l->SetBorderSize(0);
l->SetFillStyle(0);
l->AddEntry(output,"data unfolded","pl");
for(unsigned int i=0; i<truth.size(); i++){
l->AddEntry(truth[i],legnames[i],"l");
}
l->SetTextSize(0.03);
l->Draw();
c->SaveAs(directory + file_name + ".pdf");
delete c;
}