本文整理汇总了C++中TH1::Integral方法的典型用法代码示例。如果您正苦于以下问题:C++ TH1::Integral方法的具体用法?C++ TH1::Integral怎么用?C++ TH1::Integral使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TH1
的用法示例。
在下文中一共展示了TH1::Integral方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: getHistogram
TH1* getHistogram(TFile* inputFile, const std::string& channel, double massPoint,
const std::string& directory, const std::string& histogramName, double metResolution)
{
std::string process = "";
if ( massPoint < 95. ) process = "ZToTauTau";
else process = Form("HToTauTau_M-%1.0f", massPoint);
std::string metResolution_label = "";
if ( metResolution > 0. ) metResolution_label = Form("pfMEtRes%1.0f", metResolution);
else metResolution_label = "pfMEtResMC";
std::vector<TH1*> histograms;
std::string directory_process =
//Form("DQMData/%s/%s/%s/%s/plotEntryType1", process.data(), channel.data(), metResolution_label.data(), directory.data());
Form("DQMData/%s/%s/%s/plotEntryType1", process.data(), channel.data(), directory.data());
histograms.push_back(getHistogram(inputFile, directory_process, histogramName));
TH1* histogramSum = NULL;
for ( std::vector<TH1*>::const_iterator histogram = histograms.begin();
histogram != histograms.end(); ++histogram ) {
if ( !histogramSum ) {
std::string histogramSumName = std::string((*histogram)->GetName()).append("_summed");
histogramSum = (TH1*)(*histogram)->Clone(histogramSumName.data());
} else {
histogramSum->Add(*histogram);
}
}
assert(histogramSum);
if ( !histogramSum->GetSumw2N() ) histogramSum->Sumw2();
if ( histogramSum->Integral() > 0. ) histogramSum->Scale(1./histogramSum->Integral());
return histogramSum;
}
示例2: QAvertex
void QAvertex(const Char_t *fdata, const Char_t *fmc)
{
style();
TFile *fdtin = TFile::Open(fdata);
TList *ldtin = (TList *)fdtin->Get("clist");
TH2 *hdtin = (TH2 *)ldtin->FindObject("zv");
TH1 *hdt = (TH1 *)ldtin->FindObject("zvNoSel");
SetHistoStyle(hdt, 20, kRed+1);
hdt->Scale(1. / hdt->Integral());
TH1 *hdt0010 = hdtin->ProjectionX("hdt0010", 1, 4);
SetHistoStyle(hdt0010, 20, kRed+1);
hdt0010->Scale(1. / hdt0010->Integral());
TH1 *hdt7080 = hdtin->ProjectionX("hdt7080", 11, 11);
SetHistoStyle(hdt7080, 25, kAzure-3);
hdt7080->Scale(1. / hdt7080->Integral());
TFile *fmcin = TFile::Open(fmc);
TList *lmcin = (TList *)fmcin->Get("clist");
TH1 *hmc = (TH1 *)lmcin->FindObject("zvNoSel");
SetHistoStyle(hmc, 25, kAzure-3);
hmc->Scale(1. / hmc->Integral());
TCanvas *c = new TCanvas("cVertex", "cVertex", 800, 800);
TH1 * hfr = c->DrawFrame(-20., 0., 20., 0.1);
hfr->SetTitle(";#it{z}_{vtx};");
hdt0010->Draw("same");
hdt7080->Draw("same");
TLegend *legend = new TLegend(0.20, 0.18+0.60, 0.50, 0.30+0.60);
legend->SetFillColor(0);
legend->SetBorderSize(0);
legend->SetTextFont(42);
legend->SetTextSize(0.04);
legend->AddEntry(hdt0010, "0-10%", "p");
legend->AddEntry(hdt7080, "70-80%", "p");
legend->Draw("same");
c->SaveAs(canvasPrefix+"vertex.pdf");
TCanvas *c1 = new TCanvas("cVertexDataMC", "cVertexDataMC", 800, 800);
hfr = c1->DrawFrame(-20., 0., 20., 0.1);
hfr->SetTitle(";#it{z}_{vtx};");
hdt->Draw("same");
hmc->Draw("same");
legend = new TLegend(0.20, 0.18+0.60, 0.50, 0.30+0.60);
legend->SetFillColor(0);
legend->SetBorderSize(0);
legend->SetTextFont(42);
legend->SetTextSize(0.04);
legend->AddEntry(hdt, "data", "p");
legend->AddEntry(hmc, "Monte Carlo", "p");
legend->Draw("same");
c1->SaveAs(canvasPrefix+"vertexDataMC.pdf");
//return 0;
}
示例3: printGlobalPValueOfLocalFluctuation
// PValue for finding a local p-value as observed in 'bin' or worse
void ToyExperiments::printGlobalPValueOfLocalFluctuation(unsigned int bin, unsigned int nExperiments) const {
std::cout << "Determining global p-value for observed fluctuation in bin " << bin << " from " << nExperiments << " toy experiments ... " << std::flush;
// Find the predicted yields that correspond
// to the local p-value 'localPValue'
std::vector<unsigned int> limitYields = yields(localPValue(bin,observedYields_.at(bin)));
TH1* hIsAbovePValue = new TH1D("hIsAbovePValue","",2,0,2);
const double minCorr = findMinValidRandomNumberForCorrelatedUncertainties();
for(unsigned int p = 0; p < nExperiments; ++p) {
bool isAbovePValue = false;
double rCorr = rand_->Gaus(0.,1.);
while( rCorr <= minCorr ) {
rCorr = rand_->Gaus(0.,1.);
}
for(unsigned int b = 0; b < Parameters::nBins(); ++b) {
double prediction = -1.;
bool negativePrediction = true;
while( negativePrediction ) {
double rUncorr = rand_->Gaus(0.,1.);
double uncorrVar = rUncorr * uncorrelatedUncerts_.at(b);
double corrVar = rCorr * correlatedUncerts_.at(b);
prediction = meanPredictions_.at(b) + uncorrVar + corrVar;
if( prediction >= 0. ) {
negativePrediction = false;
}
}
double predictedYield = rand_->Poisson(prediction);
if( predictedYield >= limitYields.at(b) ) {
isAbovePValue = true;
break;
}
}
if( isAbovePValue ) {
hIsAbovePValue->Fill(1);
} else {
hIsAbovePValue->Fill(0);
}
}
std::cout << "ok" << std::endl;
double lpv = localPValue(bin,observedYields_.at(bin));
double gpUncorr = 1. - pow(1.-lpv,Parameters::nBins());
double gpCorr = hIsAbovePValue->Integral(2,2)/hIsAbovePValue->Integral(1,2);
std::cout << "\n\n----- Global p-value for observed fluctuation in bin " << bin << " -----" << std::endl;
std::cout << " local p-value : " << lpv << " (" << TMath::NormQuantile(1.-lpv) << "sig)" << std::endl;
std::cout << " global p-value (without correlations) : " << gpUncorr << " (" << TMath::NormQuantile(1.-gpUncorr) << "sig)" << std::endl;
std::cout << " global p-value (including correlations) : " << gpCorr << " (" << TMath::NormQuantile(1.-gpCorr) << "sig)" << std::endl;
}
示例4: cutFlow
void cutFlow(bool eff = false)
{
using namespace std;
double integral, preInt = 1.0;
vector<pair<string,TFile*> > fnames;
vector<pair<string,string> > hnames;
hnames.push_back(pair<string,string>("none","hNu/cut0_none/mWR"));
hnames.push_back(pair<string,string>("LLJJ Pt","hNu/cut1_LLJJpt/mWR"));
hnames.push_back(pair<string,string>("trig","hNu/cut2_TrigMatches/mWR"));
hnames.push_back(pair<string,string>("vertex","hNu/cut3_Vertex/mWR"));
hnames.push_back(pair<string,string>("mu1 pt","hNu/cut4_Mu1HighPt/mWR"));
hnames.push_back(pair<string,string>("Mll","hNu/cut5_diLmass/mWR"));
hnames.push_back(pair<string,string>("MWR","hNu/cut6_mWRmass/mWR"));
fnames.push_back(pair<string,TFile*>("ttbar powheg", new TFile("/local/cms/user/pastika/heavynu/heavynu_2011Bg_summer11_TTTo2L2Nu2B_7TeV-powheg-pythia6.root")));
fnames.push_back(pair<string,TFile*>("ttbar madgraph", new TFile("/local/cms/user/dahmes/wr2011/bgMC/Summer11/aug30/ttbar-PFJets.root")));
fnames.push_back(pair<string,TFile*>("Z+Jets sherpa", new TFile("/local/cms/user/pastika/heavynu/heavynu_2011Bg_summer11_DYToLL_M-50_7TeV-sherpa.root")));
fnames.push_back(pair<string,TFile*>("W+Jets sherpa", new TFile("/local/cms/user/pastika/heavynu/heavynu_2011Bg_summer11_WToLNu_7TeV-sherpa.root")));
fnames.push_back(pair<string,TFile*>("ZZ", new TFile("/local/cms/user/pastika/heavynu/heavynu_2011Bg_summer11_ZZ_TuneZ2_7TeV_pythia6_tauola.root")));
fnames.push_back(pair<string,TFile*>("WZ", new TFile("/local/cms/user/pastika/heavynu/heavynu_2011Bg_summer11_WZ_TuneZ2_7TeV_pythia6_tauola.root")));
fnames.push_back(pair<string,TFile*>("WW", new TFile("/local/cms/user/pastika/heavynu/heavynu_2011Bg_summer11_WW_TuneZ2_7TeV_pythia6_tauola.root")));
fnames.push_back(pair<string,TFile*>("tW", new TFile("/local/cms/user/pastika/heavynu/heavynu_2011Bg_summer11_T_TuneZ2_tW-channel-DR_7TeV-powheg-tauola.root")));
fnames.push_back(pair<string,TFile*>("tbarW", new TFile("/local/cms/user/pastika/heavynu/heavynu_2011Bg_summer11_Tbar_TuneZ2_tW-channel-DR_7TeV-powheg-tauola.root")));
printf("%8s", "cut");
for(vector<pair<string,TFile*> >::const_iterator i = fnames.begin(); i != fnames.end(); i++)
{
printf(eff?" & %15s ":" & %15s", i->first.c_str());
}
printf(" \\\\ \\hline\n");
for(vector<pair<string,string> >::const_iterator j = hnames.begin(); j != hnames.end(); j++)
{
printf("%8s", j->first.c_str());
for(vector<pair<string,TFile*> >::const_iterator i = fnames.begin(); i != fnames.end(); i++)
{
TH1* h = (TH1*)i->second->Get(j->second.c_str());
integral = h->Integral(0, h->GetNbinsX()+1);
printf((j == hnames.begin() && eff)?" & %15.0f ":" & %15.0f", integral);
if(j != hnames.begin() && eff)
{
TH1* hpre = (TH1*)i->second->Get((j-1)->second.c_str());
preInt = hpre->Integral(0, h->GetNbinsX()+1);
printf(" (%4.2f)", integral/preInt);
}
}
printf(" \\\\ \\hline\n");
}
}
示例5: fadc_fit_heights
void fadc_fit_heights(std::string fadc_id,std::string hist_type)
{
/*****************************************************************/
// Prepare the canvas
gStyle->SetOptFit(1111);
TCanvas *AlCapCanvas = (TCanvas *) gROOT->GetListOfCanvases()->At(0);
AlCapCanvas->Clear();
AlCapCanvas->Divide(4,2);
// gROOT->ProcessLine(".L common/get_histogram.C"); // get_histogram() is called here
/*****************************************************************/
const int n_channels = 8;
std::string bank_names[n_channels] = {"Na", "Nb", "Nc", "Nd", "Ne", "Nf", "Ng", "Nh"};
std::string name;
double mean = 0;
double rms = 0;
for (int iChn = 0; iChn < n_channels; iChn++) {
name=bank_names[iChn]+fadc_id;
TH1* hist = get_histogram(name, hist_type);
mean = hist->GetMean();
rms = hist->GetRMS();
AlCapCanvas->cd(iChn+1);
if (hist->Integral()!=0) {
TF1* gaus = new TF1("gaus","gaus",mean-rms,mean+rms);
hist->Fit("gaus","Q");
hist->GetXaxis()->SetRange(mean-2*rms,mean+2*rms);
hist->Draw();
}
}
}
示例6: makeplotTwo
void makeplotTwo(TH1& hist1, TH1& hist2, const char* plotname, int logy) {
hist1.SetLineColor(4);
hist1.SetMarkerColor(4);
gStyle->SetOptStat(0);
TCanvas* can = new TCanvas( plotname, plotname, 500, 500);
hist1.Draw( );
hist2.Draw( "same" );
TLegend *leg = new TLegend(0.55,0.8,0.89,0.92);
leg->AddEntry( &hist1,"Reconstructed","LP");
leg->AddEntry( &hist2,"Generated","L");
leg->SetFillColor(0);
leg->SetLineColor(0);
leg->Draw();
can->SetLogy( logy );
if(logy==2) hist1.GetYaxis()->SetMoreLogLabels();
std::string plot(cmEnergy);
plot.append(plotname);
can->SaveAs( (plot+".eps").c_str() );
can->SaveAs( (plot+".gif").c_str() );
can->SaveAs( (plot+".root").c_str() );
// delete can;
cout << hist1.Integral() << endl;
}
示例7: UpdateHist
// show the histogram in first slot, try a Gaussian fit with given parameters
void PRadHistCanvas::UpdateHist(int index, TObject *tob, int range_min, int range_max)
{
--index;
if(index < 0 || index >= canvases.size())
return;
canvases[index]->cd();
canvases[index]->SetGrid();
gPad->SetLogy();
TH1 *hist = (TH1*)tob;
hist->GetXaxis()->SetRangeUser(hist->FindFirstBinAbove(0,1) - 10,
hist->FindLastBinAbove(0,1) + 10);
hist->GetXaxis()->SetLabelSize(HIST_LABEL_SIZE);
hist->GetYaxis()->SetLabelSize(HIST_LABEL_SIZE);
// try to fit gaussian in certain range
if(range_max > range_min
&& hist->Integral(range_min, range_max + 1) > 0)
{
TF1 *fit = new TF1("", "gaus", range_min, range_max);
fit->SetLineColor(kRed);
fit->SetLineWidth(2);
hist->Fit(fit,"qlR");
}
hist->SetFillColor(fillColors[index]);
hist->Draw();
canvases[index]->Refresh();
}
示例8: get
// Extract and merge histograms in range [from, to) (to is not included)
//
TH1 *merge(const string &path, TFile **input, const int &from, const int &to,
const bool &do_normalize = false)
{
TH1 *result = 0;
for(int i = from; to > i; ++i)
{
TH1 *hist = get(path, input[i], i);
if (!hist)
{
cerr << "failed to extract: " << path << endl;
continue;
}
if (!result)
result = dynamic_cast<TH1 *>(hist->Clone());
else
result->Add(hist);
}
if (do_normalize
&& result
&& result->GetEntries())
{
result->Scale(1. / result->Integral());
}
return result;
}
示例9: makeplotThree
void makeplotThree(TH1& hist1, TH1& hist2, TH1& hist3, const char* plotname, int log) {
hist1.SetLineColor(4);
hist1.SetMarkerColor(4);
hist3.SetLineColor(2);
hist3.SetMarkerColor(2);
gStyle->SetOptStat(0);
TCanvas* can = new TCanvas( plotname, plotname, 500, 500);
hist1.Draw( );
hist2.Draw( "same" );
hist3.Draw( "same" );
TLegend *leg = new TLegend(0.48,0.7,0.89,0.92);
leg->AddEntry( &hist1,"CaloJet","LP");
leg->AddEntry( &hist3,"PF Jet","LP");
leg->AddEntry( &hist2,"GenJet","L");
leg->SetFillColor(0);
leg->SetLineColor(0);
leg->Draw();
can->SetLogy( log );
if(log==2) {
can->SetLogy( 1 );
hist1.GetYaxis()->SetMoreLogLabels();
}
std::string plot("ratio-");
plot.append(plotname);
can->SaveAs( (plot+".eps").c_str() );
can->SaveAs( (plot+".gif").c_str() );
can->SaveAs( (plot+".root").c_str() );
// delete can;
cout << hist1.Integral() << endl;
}
示例10: QAcentrality
void QAcentrality(const Char_t *fdata)
{
style();
TFile *fin = TFile::Open(fdata);
TList *lin = (TList *)fin->Get("clist");
lin->ls();
TH1 *hin = (TH1 *)lin->FindObject("EvCentrDist");
Float_t sum = 1.2 * hin->Integral(hin->FindBin(0.1), hin->FindBin(79.9));
hin->Scale(1. / sum);
SetHistoStyle(hin, 20, kRed+1);
TCanvas *c = new TCanvas("cQAcentrality", "cQAcentrality", 800, 800);
TH1 * hfr = c->DrawFrame(0., 0.005, 100., 0.015);
hfr->SetTitle(";centrality percentile;events");
hin->Draw("same");
c->SaveAs(canvasPrefix+"centrality.pdf");
TH2 *hinv0 = (TH2 *)lin->FindObject("V0");
TCanvas *cv0 = new TCanvas("cQAcentralityV0", "cQAcentralityV0", 800, 800);
cv0->SetLogx();
cv0->SetLogz();
// TH1 * hfrv0 = cv0->DrawFrame(100., -0.5, 50000., 10.5);
// DrawBinLabelsY(hfrv0, kTRUE);
// hfrv0->SetTitle(";V0 signal;");
//hinv0->Draw("same,col");
hinv0->Draw("col");
cv0->SaveAs(canvasPrefix+"centralityV0.pdf");
}
示例11: GetSigEfficiency
void GetSigEfficiency(TString path, TString tag){
setTDRStyle();
//gStyle->SetPalette(1);
TFile * file = new TFile(path);
TH1* hnsig = (TH1F*)file->Get(("eventcutflow"));
float nsig = float(hnsig->GetBinContent(2));
TString hist = tag + "MassRegion/h_Nelectrons_" + tag + "MassRegion";
TH1* h = (TH1*)file->Get(hist.Data());
cout << h << endl;
cout << h->Integral() << endl;
cout << nsig << endl;
cout << "Total efficiency " << tag << " = " << 100* (h->Integral() / nsig) << endl;
}
示例12: compareDYTemplates
void compareDYTemplates(TString baseURL="~/scratch0/top-newjec/syst_plotter.root")
{
TString ch[]={"ee","mumu"};
TString categs[]={"eq1jets",""};
for(size_t ich=0; ich<2; ich++)
{
for(size_t icat=0; icat<2; icat++)
{
TObjArray lowMet = getDistributionFromPlotter(ch[ich]+"_"+categs[icat]+"lowmetdilarccosine",baseURL);
TH1 *lowMetH = (TH1 *) ((TList *)lowMet.At(3))->At(3);
formatPlot(lowMetH,1,1,1,24,0,false,false,1,1,1);
lowMetH->SetTitle("E_{T}^{miss}<30 GeV/c^{2}");
lowMetH->Scale(1./lowMetH->Integral());
TObjArray highMet = getDistributionFromPlotter(ch[ich]+"_"+categs[icat]+"dilarccosine",baseURL);
TH1 *highMetH = (TH1 *) ((TList *)highMet.At(3))->At(3);
formatPlot(highMetH,1,1,1,20,0,false,false,1,1,1);
highMetH->SetTitle("E_{T}^{miss}>30 GeV/c^{2}");
highMetH->Scale(1./highMetH->Integral());
TString channelTitle(ich==0 ? "ee" : "#mu#mu");
if(categs[icat]=="eq1jets") channelTitle += "+ 1 jet";
else channelTitle += "+ #geq 2 jets";
//draw
TString plot(ch[ich]+categs[icat]+"_anglecomparison");
TCanvas *cnv = getNewCanvas(plot+"c",plot+"c",false);
cnv->Clear();
cnv->SetWindowSize(600,600);
cnv->cd();
TList *mc = new TList; mc->Add(lowMetH);
TList *data = new TList; data->Add(highMetH);
TList *spimpose = new TList;
TLegend *leg=showPlotsAndMCtoDataComparison(cnv,*mc,*spimpose,*data,false);
TPad *p=(TPad *)cnv->cd(1);
formatForCmsPublic(p,leg,"CMS simulation, " + channelTitle, 4);
cnv->SaveAs(plot+".C");
cnv->SaveAs(plot+".pdf");
cnv->SaveAs(plot+".png");
}
}
}
示例13: getMonitorElement
TH1* getMonitorElement(TFile* inputFile, const TString& dqmDirectoryName, const char* processName, const TString& meName)
{
TString meName_full = TString("DQMData/tauFakeRate/harvested").Append("/").Append(processName).Append("/").Append(dqmDirectoryName).Append("/").Append(meName);
//TString meName_full = TString("DQMData").Append("/").Append(dqmDirectoryName).Append("/").Append(meName);
std::cout << "meName_full = " << meName_full << std::endl;
TH1* me = (TH1*)inputFile->Get(meName_full);
std::cout << "me = " << me << std::endl;
std::cout << "integral = " << me->Integral() << std::endl;
return me;
}
示例14: IntegralStack
double IntegralStack(THStack* stack) {
double val=0;
TList* list = stack->GetHists();
TIter it(list, true);
TObject* obj=0;
while( (obj = it.Next()) ) {
TH1* h = dynamic_cast<TH1*>(obj);
val += h->Integral();
}
return val;
}
示例15:
TEST_F(EvalHistMethods, CreateHistogram1D) {
evaluator->SetNormalizationBuffer(norm);
evaluator->SetParameterBuffer(params);
TH1* hist = evaluator->CreateHistogram();
EXPECT_EQ(2, hist->GetNbinsX());
ASSERT_FLOAT_EQ(1.0, hist->Integral("width"));
ASSERT_FLOAT_EQ(1.6, hist->GetBinContent(hist->FindBin(0.25)));
ASSERT_FLOAT_EQ(0.4, hist->GetBinContent(hist->FindBin(0.75)));
delete hist;
}