本文整理汇总了C++中TH1::GetTitle方法的典型用法代码示例。如果您正苦于以下问题:C++ TH1::GetTitle方法的具体用法?C++ TH1::GetTitle怎么用?C++ TH1::GetTitle使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TH1
的用法示例。
在下文中一共展示了TH1::GetTitle方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: getPlotData
void getPlotData() {
TH1 * h = (TH1*) m_file->Get(m_direc.c_str());
for (int i=0; i<h->GetXaxis()->GetNbins(); i++) {
m_xs.push_back(h->GetXaxis()->GetBinCenter(i));
m_ys.push_back(h->GetBinContent(i));
}
m_plot->m_xAxisTitle = std::string(h->GetXaxis()->GetTitle());
m_plot->m_yAxisTitle = std::string(h->GetYaxis()->GetTitle());
m_plot->m_title = std::string(h->GetTitle());
std::stringstream ssN, ssMu, ssSig, ssUF, ssOF;
ssN << std::setprecision(4) << h->GetEntries();
ssMu << std::setprecision(4) << h->GetMean();
ssSig << std::setprecision(4) << h->GetRMS();
ssUF << std::setprecision(4) << h->GetBinContent(0);
ssOF << std::setprecision(4) << h->GetBinContent(h->GetNbinsX() + 1);
m_statsTitles.push_back("N:");
m_statsTitles.push_back("mu:");
m_statsTitles.push_back("sig:");
m_statsTitles.push_back("UF:");
m_statsTitles.push_back("OF:");
m_statsValues.push_back(ssN.str());
m_statsValues.push_back(ssMu.str());
m_statsValues.push_back(ssSig.str());
m_statsValues.push_back(ssUF.str());
m_statsValues.push_back(ssOF.str());
}
示例2: counts
void counts(int run, int lumistart, int lumiend, string type, map<string,vector<tripletI> > &cnt, vector<tripletD> &cntref, string hlttype, bool docnt, bool doref) {
TString filename = basedir + Form("/DQM_V0001_HLTpb_R000%i.root",run);
TFile *f = new TFile(filename);
if (!f->IsOpen()) {
cout << "Error, could not open " << filename << endl;
return;
}
TString tdirname = Form("DQMData/Run %i/HLT/Run summary/TriggerRates/",run) + TString(type);
f->cd(tdirname);
TProfile *hlumi = (TProfile*) f->Get(Form("DQMData/Run %i/HLT/Run summary/LumiMonitoring/lumiVsLS",run));
if (extrapol) extrapolate(hlumi);
// if HLT: accept, error, pass L1 seed, pass prescaler, reject
TIter next(gDirectory->GetListOfKeys());
TKey *key;
while ((key = (TKey*)next())) {
TClass *cl = gROOT->GetClass(key->GetClassName());
// it must be an histogram
if (!cl->InheritsFrom("TH1")) continue;
TH1 *h = (TH1*)key->ReadObj();
// the name must match one of the requested patterns
bool match=false; TString hname(h->GetName());
for (vector<TRegexp>::const_iterator it=patterns.begin(); it!=patterns.end(); it++) {
if (hname(*it).Length()!=0) {
match=true;
break;
}
}
if (!match) continue;
int nlumis = (lumiend+1-lumistart);
if (extrapol) extrapolate(h);
if (type != "HLT") fill(cnt[h->GetName()], h, run, lumistart, lumiend, docnt);
else {
string htitle(h->GetTitle());
if (htitle.find(hlttype) == string::npos) continue;
else {
TString thepath; Ssiz_t from=0; TString(htitle).Tokenize(thepath,from," ");
fill(cnt[thepath.Data()], h, run, lumistart, lumiend, docnt);
}
}
}
if (doref) {
fill(cntref, hlumi, run, lumistart, lumiend);
}
f->Close();
delete f;
}
示例3: tit
/**
* Create ratios to other data
*
* @param ib Bin number
* @param res Result
* @param alice ALICE result if any
* @param cms CMS result if any
* @param all Stack to add ratio to
*/
void Ratio2Stack(Int_t ib, TH1* res, TGraph* alice, TGraph* cms, THStack* all)
{
if (!all || !res || !(alice || cms)) return;
Int_t off = 5*ib;
TGraph* gs[] = { (alice ? alice : cms), (alice ? cms : 0), 0 };
TGraph** pg = gs;
while (*pg) {
TGraph* g = *pg;
const char* n = (g == alice ? "ALICE" : "CMS");
TH1* r = static_cast<TH1*>(res->Clone(Form("ratio%s", n)));
TString tit(r->GetTitle());
tit.ReplaceAll("Corrected", Form("Ratio to %s", n));
r->SetTitle(tit);
r->SetMarkerColor(g->GetMarkerColor());
r->SetLineColor(g->GetLineColor());
TObject* tst = r->FindObject("legend");
if (tst) r->GetListOfFunctions()->Remove(tst);
for (Int_t i = 1; i <= r->GetNbinsX(); i++) {
Double_t c = r->GetBinContent(i);
Double_t e = r->GetBinError(i);
Double_t o = g->Eval(r->GetBinCenter(i));
if (o < 1e-12) {
r->SetBinContent(i, 0);
r->SetBinError(i, 0);
continue;
}
r->SetBinContent(i, (c - o) / o + off);
r->SetBinError(i, e / o);
}
all->Add(r);
pg++;
}
TLegend* leg = StackLegend(all);
if (!leg) return;
TString txt = res->GetTitle();
txt.ReplaceAll("Corrected P(#it{N}_{ch}) in ", "");
if (ib == 0) txt.Append(" "); // (#times1)");
// else if (ib == 1) txt.Append(" (#times10)");
else txt.Append(Form(" (+%d)", off));
TObject* dummy = 0;
TLegendEntry* e = leg->AddEntry(dummy, txt, "p");
e->SetMarkerStyle(res->GetMarkerStyle());
e->SetMarkerSize(res->GetMarkerSize());
e->SetMarkerColor(kBlack);
e->SetFillColor(0);
e->SetFillStyle(0);
e->SetLineColor(kBlack);
}
示例4: TGraphAsymmErrors
RooHistN::RooHistN(const TH1 &data1, const TH1 &data2, Double_t nominalBinWidth, Double_t nSigma, Double_t xErrorFrac) :
TGraphAsymmErrors(), _nominalBinWidth(nominalBinWidth), _nSigma(nSigma), _rawEntries(-1)
{
// Create a histogram from the asymmetry between the specified TH1 objects
// which may have fixed or variable bin widths, but which must both have
// the same binning. The asymmetry is calculated as (1-2)/(1+2). Error bars are
// calculated using Binomial statistics. Prints a warning and rounds
// any bins with non-integer contents. Use the optional parameter to
// specify the confidence level in units of sigma to use for
// calculating error bars. The nominal bin width specifies the
// default used by addAsymmetryBin(), and is used to set the relative
// normalization of bins with different widths. If not set, the
// nominal bin width is calculated as range/nbins.
initialize();
// copy the first input histogram's name and title
SetName(data1.GetName());
SetTitle(data1.GetTitle());
// calculate our nominal bin width if necessary
if(_nominalBinWidth == 0) {
const TAxis *axis= ((TH1&)data1).GetXaxis();
if(axis->GetNbins() > 0) _nominalBinWidth= (axis->GetXmax() - axis->GetXmin())/axis->GetNbins();
}
setYAxisLabel(Form("Asymmetry (%s - %s)/(%s + %s)",
data1.GetName(),data2.GetName(),data1.GetName(),data2.GetName()));
// initialize our contents from the input histogram contents
Int_t nbin= data1.GetNbinsX();
if(data2.GetNbinsX() != nbin) {
coutE(InputArguments) << "RooHistN::RooHistN: histograms have different number of bins" << endl;
return;
}
for(Int_t bin= 1; bin <= nbin; bin++) {
Axis_t x= data1.GetBinCenter(bin);
if(fabs(data2.GetBinCenter(bin)-x)>1e-10) {
coutW(InputArguments) << "RooHistN::RooHistN: histograms have different centers for bin " << bin << endl;
}
Stat_t y1= data1.GetBinContent(bin);
Stat_t y2= data2.GetBinContent(bin);
addAsymmetryBin(x,roundBin(y1),roundBin(y2),data1.GetBinWidth(bin),xErrorFrac);
}
// we do not have a meaningful number of entries
_entries= -1;
}
示例5: get_var_names
TString* get_var_names( Int_t nVars )
{
const TString directories[6] = { "InputVariables_NoTransform",
"InputVariables_DecorrTransform",
"InputVariables_PCATransform",
"InputVariables_Id",
"InputVariables_Norm",
"InputVariables_Deco"};
TDirectory* dir = 0;
for (Int_t i=0; i<6; i++) {
dir = (TDirectory*)Network_GFile->Get( directories[i] );
if (dir != 0) break;
}
if (dir==0) {
cout << "*** Big troubles in macro \"network.C\": could not find directory for input variables, "
<< "and hence could not determine variable names --> abort" << endl;
return 0;
}
cout << "--> go into directory: " << dir->GetName() << endl;
dir->cd();
TString* vars = new TString[nVars];
Int_t ivar = 0;
// loop over all objects in directory
TIter next(dir->GetListOfKeys());
TKey* key = 0;
while ((key = (TKey*)next())) {
if (key->GetCycle() != 1) continue;
if(!TString(key->GetName()).Contains("__S") &&
!TString(key->GetName()).Contains("__r")) continue;
// make sure, that we only look at histograms
TClass *cl = gROOT->GetClass(key->GetClassName());
if (!cl->InheritsFrom("TH1")) continue;
TH1 *sig = (TH1*)key->ReadObj();
TString hname = sig->GetTitle();
vars[ivar] = hname; ivar++;
if (ivar > nVars-1) break;
}
if (ivar != nVars-1) { // bias layer is also in nVars counts
cout << "*** Troubles in \"network.C\": did not reproduce correct number of "
<< "input variables: " << ivar << " != " << nVars << endl;
}
return vars;
// ------------- old way (not good) -------------
// TString fname = "weights/TMVAnalysis_MLP.weights.txt";
// ifstream fin( fname );
// if (!fin.good( )) { // file not found --> Error
// cout << "Error opening " << fname << endl;
// exit(1);
// }
// Int_t idummy;
// Float_t fdummy;
// TString dummy = "";
// // file header with name
// while (!dummy.Contains("#VAR")) fin >> dummy;
// fin >> dummy >> dummy >> dummy; // the rest of header line
// // number of variables
// fin >> dummy >> idummy;
// // at this point, we should have idummy == nVars
// // variable mins and maxes
// TString* vars = new TString[nVars];
// for (Int_t i = 0; i < idummy; i++) fin >> vars[i] >> dummy >> dummy >> dummy;
// fin.close();
// return vars;
}
示例6: variables
//.........这里部分代码省略.........
TString hname(sig->GetName());
//normalize to 1
NormalizeHist(sig);
// create new canvas
if (countPad%noPadPerCanv==0) {
++countCanvas;
canv = new TCanvas( Form("canvas%d", countCanvas), title,
countCanvas*50+50, countCanvas*20, width, height );
canv->Divide(xPad,yPad);
canv->SetFillColor(kWhite);
canv->Draw();
}
TPad* cPad = (TPad*)canv->cd(countPad++%noPadPerCanv+1);
cPad->SetFillColor(kWhite);
// find the corredponding backgrouns histo
TString bgname = hname;
bgname.ReplaceAll("__Signal","__Background");
TH1 *bgd = (TH1*)dir->Get(bgname);
if (bgd == NULL) {
cout << "ERROR!!! couldn't find background histo for" << hname << endl;
exit;
}
//normalize to 1
NormalizeHist(bgd);
// this is set but not stored during plot creation in MVA_Factory
TMVAGlob::SetSignalAndBackgroundStyle( sig, (isRegression ? 0 : bgd) );
sig->SetTitle( TString( htitle ) + ": " + sig->GetTitle() );
TMVAGlob::SetFrameStyle( sig, 1.2 );
// normalise both signal and background
// if (!isRegression) TMVAGlob::NormalizeHists( sig, bgd );
// else {
// // change histogram title for target
// TString nme = sig->GetName();
// if (nme.Contains( "_target" )) {
// TString tit = sig->GetTitle();
// sig->SetTitle( tit.ReplaceAll("Input variable", "Regression target" ) );
// }
// }
sig->SetTitle( "" );
// finally plot and overlay
Float_t sc = 1.1;
if (countPad == 1) sc = 1.3;
sig->SetMaximum( TMath::Max( sig->GetMaximum(), bgd->GetMaximum() )*sc );
sig->Draw( "hist" );
cPad->SetLeftMargin( 0.17 );
sig->GetYaxis()->SetTitleOffset( 1.50 );
if (!isRegression) {
bgd->Draw("histsame");
TString ytit = TString("(1/N) ") + sig->GetYaxis()->GetTitle();
ytit = TString("Fraction of Events");
sig->GetYaxis()->SetTitle( ytit ); // histograms are normalised
}
if (countPad == 1) sig->GetXaxis()->SetTitle("Leading Lepton p_{T} [GeV/c]");
if (countPad == 2) sig->GetXaxis()->SetTitle("Trailing Lepton p_{T} [GeV/c]");
示例7: GetCentK
TH1* GetCentK(TDirectory* top, Double_t c1, Double_t c2, Int_t s,
TLegend* l)
{
TString dname; dname.Form("cent%06.2f_%06.2f", c1, c2);
dname.ReplaceAll(".", "d");
TDirectory* d = top->GetDirectory(dname);
if (!d) {
Warning("GetCetnK", "Directory %s not found in %s",
dname.Data(), top->GetName());
return;
}
TDirectory* det = d->GetDirectory("details");
if (!det) {
Warning("GetCetnK", "Directory details not found in %s",
d->GetName());
d->ls();
return;
}
TObject* o = det->Get("scalar");
if (!o) {
Warning("GetCetnK", "Object scalar not found in %s",
det->GetName());
return;
}
if (!o->IsA()->InheritsFrom(TH1::Class())) {
Warning("GetCetnK", "Object %s is not a TH1, but a %s",
o->GetName(), o->ClassName());
return;
}
TH1* h = static_cast<TH1*>(o->Clone());
Color_t col = cc[(s-1)%10];
h->SetLineColor(col);
h->SetMarkerColor(col);
h->SetFillColor(col);
h->SetFillStyle(1001);
// h->SetTitle(Form("%5.2f-%5.2f%% #times %d", c1, c2, s));
h->SetTitle(Form("%2.0f-%2.0f%% + %d", c1, c2, s-1));
TF1* f = new TF1("", "[0]",-2.2,2.2);
f->SetParameter(0,s-1);
f->SetLineColor(col);
f->SetLineStyle(7);
f->SetLineWidth(1);
// h->Scale(s);
h->Add(f);
h->GetListOfFunctions()->Add(f);
f->SetParameter(0,s);
for (Int_t i = 1; i <= h->GetNbinsX(); i++) {
if (TMath::Abs(h->GetBinCenter(i)) > 2) {
h->SetBinContent(i,0);
h->SetBinError(i,0);
}
}
TLegendEntry* e = l->AddEntry(h, h->GetTitle(), "f");
e->SetFillColor(col);
e->SetFillStyle(1001);
e->SetLineColor(col);
return h;
}
示例8: DrawTwoInPad
void DrawTwoInPad(TVirtualPad* p,
Int_t sub,
TH1* h1,
TH1* h2,
Bool_t ratio,
Bool_t logy=false,
Bool_t legend=false)
{
TVirtualPad* pp = p->cd(sub);
pp->SetRightMargin(0.02);
pp->SetLeftMargin(0.10);
TVirtualPad* ppp = pp;
if (ratio) {
pp->Divide(1,2,0,0);
ppp = pp->cd(1);
ppp->SetRightMargin(0.02);
}
if (logy) ppp->SetLogy();
TH1* hs[] = { h1, h2, 0 };
if (h1->GetMaximum() < h2->GetMaximum()) {
hs[0] = h2;
hs[1] = h1;
}
TH1** ph = hs;
Double_t size = (ratio ? 0.1 : 0.05);
Double_t off = (ratio ? 0.6 : 0.5);
h1->SetFillStyle(3004);
h2->SetFillStyle(3005);
while (*ph) {
TString opt("hist");
if (ph != hs) opt.Append(" same");
TH1* copy = (*ph)->DrawCopy(opt);
copy->GetXaxis()->SetLabelSize(2*size);
copy->GetYaxis()->SetLabelSize(size);
copy->GetYaxis()->SetTitleSize(size);
copy->GetYaxis()->SetTitleOffset(off);
copy->SetYTitle(copy->GetTitle());
copy->SetTitle("");
copy->SetDirectory(0);
ph++;
}
TString s1 = h1->GetYaxis()->GetTitle();
TString s2 = h2->GetYaxis()->GetTitle();
if (legend) {
TLegend* l = new TLegend(0.6, 0.1, 0.9, 0.9);
l->SetBorderSize(0);
TLegendEntry* e = l->AddEntry("dummy", s1, "lf");
l->SetFillColor(kWhite);
e->SetFillColor(kBlack);
e->SetFillStyle(h1->GetFillStyle());
e = l->AddEntry("dummy", s2, "lf");
e->SetFillColor(kBlack);
e->SetFillStyle(h2->GetFillStyle());
l->Draw();
}
if (!ratio) return;
ppp = pp->cd(2);
ppp->SetRightMargin(0.02);
TH1* r = static_cast<TH1*>(h1->Clone(Form("ratio%s", h1->GetName())));
r->SetDirectory(0);
r->SetTitle("");
r->GetXaxis()->SetLabelSize(size);
r->GetYaxis()->SetLabelSize(size);
r->GetYaxis()->SetTitleSize(0.9*size);
r->GetYaxis()->SetTitleOffset(0.9*off);
r->SetMarkerStyle(20);
r->SetMarkerColor(h1->GetFillColor()+1);
r->SetFillStyle(3007);
r->SetYTitle(Form("#frac{%s}{%s}", s1.Data(), s2.Data()));
// r->Add(h2, -1);
// r->Divide(h1);
if (!r->IsA()->InheritsFrom(TProfile::Class())) {
r->GetSumw2()->Set(0); // r->Sumw2(false);
h2->GetSumw2()->Set(0); // h2->Sumw2(false);
}
r->Divide(h2);
Printf("%s", r->GetName());
for (UShort_t bin = 1; bin <= r->GetNbinsX(); bin++) {
Printf(" bin # %2d: Diff=%g+/-%g", bin, r->GetBinContent(bin),
r->GetBinError(bin));
r->SetBinError(bin, 0);
}
r->GetSumw2()->Set(0); //r->Sumw2(false);
r->SetMarkerSize(4);
r->SetMaximum(r->GetMaximum()*1.2);
r->SetMinimum(r->GetMinimum()*0.8);
r->Draw("hist text30");
p->Modified();
p->Update();
p->cd();
}
示例9: ProcessSummary
TObjArray* ProcessSummary(TObjArray* arrs, int icl, const char* pref)
{
// Process TObjArray (e.g. for set of pt bins) of TObjArray of KMCTrackSummary objects:
// pick the KMCTrackSummary for "summary class" icl (definition of acceptable track) and create
// graphs vs bin.
// These graphs are returned in new TObjArray
//
TString prefs = pref;
if (!gs) gs = new TF1("gs","gaus",-1,1);
//
int nb = arrs->GetEntriesFast();
TObjArray* sums = (TObjArray*) arrs->At(0);
int nclass = sums->GetEntriesFast();
if (icl>=nclass) {printf("summary set has %d classes only, %d requested\n",nclass,icl);return 0;}
//
KMCTrackSummary* sm = (KMCTrackSummary*)sums->At(icl);
//
TH1* h;
//
h = sm->GetHMCSigDCARPhi(); // MC resolution in transverse DCA
TGraphErrors * grSigD = 0;
if (h) {
grSigD = new TGraphErrors(nb);
grSigD->SetName(Form("%s%s",prefs.Data(),h->GetName()));
grSigD->SetTitle(Form("%s%s",prefs.Data(),h->GetTitle()));
}
//
TGraphErrors * grSigZ = 0;
h = sm->GetHMCSigDCAZ(); // MC resolution in Z DCA
if (h) {
grSigZ = new TGraphErrors(nb);
grSigZ->SetName(Form("%s%s",prefs.Data(),h->GetName()));
grSigZ->SetTitle(Form("%s%s",prefs.Data(),h->GetTitle()));
}
//
TGraphErrors * grSigAD = 0; // anaitical estimate for resolution in transverse DCA
{
grSigAD = new TGraphErrors(nb);
grSigAD->SetName(Form("%s%s",prefs.Data(),"sigmaDan"));
grSigAD->SetTitle(Form("%s%s",prefs.Data(),"#sigmaD an"));
}
//
TGraphErrors * grSigAZ = 0; // anaitical estimate for resolution in Z DCA
{
grSigAZ = new TGraphErrors(nb);
grSigAZ->SetName(Form("%s%s",prefs.Data(),"sigmaZan"));
grSigAZ->SetTitle(Form("%s%s",prefs.Data(),"#sigmaZ an"));
}
//
//
TGraphErrors * grSigPt = 0; // MC res. in pt
{
grSigPt = new TGraphErrors(nb);
grSigPt->SetName(Form("%s%s",prefs.Data(),"sigmaPt"));
grSigPt->SetTitle(Form("%s%s",prefs.Data(),"#sigmaPt"));
}
//
TGraphErrors * grSigAPt = 0; // analitycal res. in pt
{
grSigAPt = new TGraphErrors(nb);
grSigAPt->SetName(Form("%s%s",prefs.Data(),"sigmaPtan"));
grSigAPt->SetTitle(Form("%s%s",prefs.Data(),"#sigmaPt an"));
}
//
TGraphErrors * grEff = 0; // MC efficiency
{
grEff = new TGraphErrors(nb);
grEff->SetName(Form("%s_rate",prefs.Data()));
grEff->SetTitle(Form("%s Rate",prefs.Data()));
}
//
TGraphErrors * grUpd = 0; // number of Kalman track updates
{
grUpd = new TGraphErrors(nb);
grUpd->SetName(Form("%s_updCalls",prefs.Data()));
grUpd->SetTitle(Form("%s Updates",prefs.Data()));
}
//
for (int ib=0;ib<nb;ib++) {
sums = (TObjArray*) arrs->At(ib);
sm = (KMCTrackSummary*)sums->At(icl);
KMCProbe& prbRef = sm->GetRefProbe();
KMCProbe& prbAn = sm->GetAnProbe();
double pt = prbRef.Pt();
//
if (grSigAD) {
grSigAD->SetPoint(ib, pt,prbAn.GetSigmaY2()>0 ? TMath::Sqrt(prbAn.GetSigmaY2()) : 0.);
}
//
if (grSigAZ) {
grSigAZ->SetPoint(ib, pt,prbAn.GetSigmaZ2()>0 ? TMath::Sqrt(prbAn.GetSigmaZ2()) : 0.);
}
//
if (grSigAPt) {
double pts = TMath::Sqrt(prbAn.GetSigma1Pt2());
grSigAPt->SetPoint(ib, pt,pts>0 ? pts*pt : 0.);
}
//
//.........这里部分代码省略.........
示例10: comparisonJetMCData
void comparisonJetMCData(string plot,int rebin){
string tmp;
string dir="/gpfs/cms/data/2011/Observables/Approval/";
if (isAngularAnalysis){
mcfile=dir+"MC_zjets"+version;
back_w=dir+"MC_wjets"+version;
back_ttbar=dir+"MC_ttbar"+version;
WW=dir+"MC_diW"+version;
ZZ=dir+"MC_siZ"+version;
WZ=dir+"MC_diWZ"+version;
datafile=dir+"DATA"+version;
mcfiletau=dir+"MC_zjetstau"+version;
}
// List of files
TFile *dataf = TFile::Open(datafile.c_str()); //data file
TFile *mcf = TFile::Open(mcfile.c_str()); //MC file
TFile *mcftau = TFile::Open(mcfiletau.c_str()); //MC file
TFile *ttbarf = TFile::Open(back_ttbar.c_str()); //MC background file
TFile *wf = TFile::Open(back_w.c_str());
TFile *qcd23emf = TFile::Open(qcd23em.c_str());
TFile *qcd38emf = TFile::Open(qcd38em.c_str());
TFile *qcd817emf = TFile::Open(qcd817em.c_str());
TFile *qcd23bcf = TFile::Open(qcd23bc.c_str());
TFile *qcd38bcf = TFile::Open(qcd38bc.c_str());
TFile *qcd817bcf = TFile::Open(qcd817bc.c_str());
TFile *WZf = TFile::Open(WZ.c_str());
TFile *ZZf = TFile::Open(ZZ.c_str());
TFile *WWf = TFile::Open(WW.c_str());
// Canvas
if (CanvPlot) delete CanvPlot;
CanvPlot = new TCanvas("CanvPlot","CanvPlot",0,0,800,600);
// Getting, defining ...
dataf->cd("validationJEC");
if (isMu && isAngularAnalysis) dataf->cd("validationJECmu");
TObject * obj;
gDirectory->GetObject(plot.c_str(),obj);
TH1 *data;
TH2F *data2;
TH1D *data3;
THStack *hs = new THStack("hs","Total MC");
int flag=-1;
if ((data = dynamic_cast<TH1F *>(obj)) ){
flag=1;
gROOT->Reset();
gROOT->ForceStyle();
gStyle->SetPadRightMargin(0.03);
gPad->SetLogy(1);
gPad->Modified();
gPad->Update();
}
if ((data2 = dynamic_cast<TH2F *>(obj)) ){
flag=2;
gStyle->SetPalette(1);
gStyle->SetPadRightMargin(0.15);
gPad->Modified();
}
//===================
// Dirty jobs :)
if (flag==1){
CanvPlot->cd();
TPad *pad1 = new TPad("pad1","pad1",0.01,0.33,0.99,0.99);
pad1->Draw();
pad1->cd();
pad1->SetTopMargin(0.1);
pad1->SetBottomMargin(0.01);
pad1->SetRightMargin(0.1);
pad1->SetFillStyle(0);
pad1->SetLogy(1);
TString str=data->GetTitle();
if (str.Contains("jet") && !str.Contains("zMass") && !str.Contains("Num") && !str.Contains("Eta") && !str.Contains("Phi") && !str.Contains("eld") && !str.Contains("meanPtZVsNjet")) {
if (!isAngularAnalysis) rebin=1;
}
//======================
// DATA
Double_t dataint = data->Integral();
data->SetLineColor(kBlack);
data->Rebin(rebin);
if(str.Contains("nJetVtx")) data->GetXaxis()->SetRangeUser(0,10);
if(str.Contains("zMass")) data->GetXaxis()->SetRangeUser(70,110);
data->SetMinimum(1.);
data->Sumw2();
//.........这里部分代码省略.........
示例11: next
//.........这里部分代码省略.........
for (Int_t iev=0; iev< nevent; iev++) {
// get entry
t1->GetEntry(iev);
t2->GetEntry(iev);
nMCTracks = MCTracks->GetEntriesFast();
nPoints = TutorialDetPoints->GetEntriesFast();
nHits = TutorialDetHits->GetEntriesFast();
cout << " Event" << iev << ":";
cout << nMCTracks << " MC tracks ";
cout << nPoints << " points ";
cout << nHits << " Hits "<<endl;
// Hit loop
for (Int_t j =0; j<nHits; j++) {
Hit = (FairTutorialDet4Hit*) TutorialDetHits->At(j);
Int_t l = Hit->GetRefIndex();
Point = (FairTutorialDet4Point*) TutorialDetPoints->At(l);
// Point info
x_poi = Point -> GetX();
y_poi = Point -> GetY();
z_poi = Point -> GetZ();
// Hit info
x_hit = Hit->GetX();
y_hit = Hit->GetY();
z_hit = Hit->GetZ();
dy_hit = Hit->GetDy();
// Int_t flg_hit = Hit->GetFlag();
Float_t delta_x = x_poi - x_hit;
Float_t delta_y = y_poi - y_hit;
Float_t delta_z = z_poi - z_hit;
dxx ->Fill(x_poi,delta_x);
dyy ->Fill(y_poi,delta_y);
pullx ->Fill(delta_x);
pully ->Fill(delta_y);
pullz ->Fill(delta_z);
pointx ->Fill(x_hit);
pointy ->Fill(y_hit);
} // Hit loop end
} // event loop end
// save histos to file
// TFile *fHist = TFile::Open("data/auaumbias.hst.root","RECREATE");
cout << "Processing done, outflag =" <<iout << endl;
if (iout==1){
fHist->Write();
if(0){ // explicit writing
TIter next(gDirectory->GetList());
TH1 *h;
TObject* obj;
while(obj= (TObject*)next()){
if(obj->InheritsFrom(TH1::Class())){
h = (TH1*)obj;
cout << "Write histo " << h->GetTitle() << endl;
h->Write();
}
}
}
fHist->ls();
fHist->Close();
}
// ----- Finish -------------------------------------------------------
cout << endl << endl;
// Extract the maximal used memory an add is as Dart measurement
// This line is filtered by CTest and the value send to CDash
FairSystemInfo sysInfo;
Float_t maxMemory=sysInfo.GetMaxMemory();
cout << "<DartMeasurement name=\"MaxMemory\" type=\"numeric/double\">";
cout << maxMemory;
cout << "</DartMeasurement>" << endl;
timer.Stop();
Double_t rtime = timer.RealTime();
Double_t ctime = timer.CpuTime();
Float_t cpuUsage=ctime/rtime;
cout << "<DartMeasurement name=\"CpuLoad\" type=\"numeric/double\">";
cout << cpuUsage;
cout << "</DartMeasurement>" << endl;
cout << endl << endl;
cout << "Output file is " << outFile << endl;
cout << "Parameter file is " << parFile << endl;
cout << "Real time " << rtime << " s, CPU time " << ctime
<< "s" << endl << endl;
cout << "Macro finished successfully." << endl;
// ------------------------------------------------------------------------
}
示例12: FullTitle
string FullTitle(const TH1 &h) {
return string(h.GetTitle())
+";"+h.GetXaxis()->GetTitle()
+";"+h.GetYaxis()->GetTitle();
}
示例13: ProcessBin
/**
* Process a single eta bin
*
* @param measured Input collection of measured data
* @param corrections Input collection of correction data
* @param method Unfolding method to use
* @param regParam Regularisation parameter
* @param out Output directory.
*
* @return Stack of histograms or null
*/
THStack* ProcessBin(TCollection* measured,
TCollection* corrections,
UInt_t method,
Double_t regParam,
TDirectory* out)
{
Printf(" Processing %s ...", measured->GetName());
// Try to get the data
TH1* inRaw = GetH1(measured, "rawDist");
TH1* inTruth = GetH1(corrections, "truth");
TH1* inTruthA = GetH1(corrections, "truthAccepted");
TH1* inTrgVtx = GetH1(corrections, "triggerVertex");
TH2* inResp = GetH2(corrections, "response");
if (!inRaw || !inTruth || !inTruthA || !inTrgVtx || !inResp)
return 0;
// Make output directory
TDirectory* dir = out->mkdir(measured->GetName());
dir->cd();
// Copy the input to the output
TH1* outRaw = static_cast<TH1*>(inRaw ->Clone("measured"));
TH1* outTruth = static_cast<TH1*>(inTruth ->Clone("truth"));
TH1* outTruthA = static_cast<TH1*>(inTruthA ->Clone("truthAccepted"));
TH1* outTrgVtx = static_cast<TH1*>(inTrgVtx ->Clone("triggerVertex"));
TH2* outResp = static_cast<TH2*>(inResp ->Clone("response"));
// Make our response matrix
RooUnfoldResponse matrix(0, 0, inResp);
// Store regularization parameter
Double_t r = regParam;
RooUnfold::Algorithm algo = (RooUnfold::Algorithm)method;
RooUnfold* unfolder = RooUnfold::New(algo, &matrix, inRaw, r);
unfolder->SetVerbose(0);
// Do the unfolding and get the result
TH1* res = unfolder->Hreco();
res->SetDirectory(0);
// Make a copy to store on the output
TH1* outUnfold = static_cast<TH1*>(res->Clone("unfolded"));
TString tit(outUnfold->GetTitle());
tit.ReplaceAll("Unfold Reponse matrix", "Unfolded P(#it{N}_{ch})");
outUnfold->SetTitle(tit);
// Clone the unfolded results and divide by the trigger/vertex
// bias correction
TH1* outCorr = static_cast<TH1*>(outUnfold->Clone("corrected"));
outCorr->Divide(inTrgVtx);
tit.ReplaceAll("Unfolded", "Corrected");
outCorr->SetTitle(tit);
// Now normalize the output to integral=1
TH1* hists[] = { outRaw, outUnfold, outCorr, 0 };
TH1** phist = hists;
while (*phist) {
TH1* h = *phist;
if (h) {
Double_t intg = h->Integral(1, h->GetXaxis()->GetXmax());
h->Scale(1. / intg, "width");
}
phist++;
}
// And make ratios
TH1* ratioTrue = static_cast<TH1*>(outCorr->Clone("ratioCorrTruth"));
tit = ratioTrue->GetTitle();
tit.ReplaceAll("Corrected", "Corrected/MC 'truth'");
ratioTrue->SetTitle(tit);
ratioTrue->Divide(outTruth);
ratioTrue->SetYTitle("P_{corrected}(#it{N}_{ch})/P_{truth}(#it{N}_{ch})");
TH1* ratioAcc = static_cast<TH1*>(outUnfold->Clone("ratioUnfAcc"));
tit = ratioAcc->GetTitle();
tit.ReplaceAll("Unfolded", "Unfolded/MC selected");
ratioAcc->SetTitle(tit);
ratioAcc->Divide(outTruthA);
ratioAcc->SetYTitle("P_{unfolded}(#it{N}_{ch})/P_{MC}(#it{N}_{ch})");
// Make a stack
tit = measured->GetName();
tit.ReplaceAll("m", "-");
tit.ReplaceAll("p", "+");
tit.ReplaceAll("d", ".");
tit.ReplaceAll("_", "<#it{#eta}<");
THStack* stack = new THStack("all", tit);
stack->Add(outTruth, "E2");
//.........这里部分代码省略.........
示例14: mvas
//.........这里部分代码省略.........
Form("probability_%s",methodTitle.Data()) :
(htype == CompareType) ?
Form("comparison_%s",methodTitle.Data()) :
Form("rarity_%s",methodTitle.Data()));
c = new TCanvas( Form("canvas%d", countCanvas+1), ctitle,
countCanvas*50+200, countCanvas*20, width, (Int_t)width*0.78 );
// set the histogram style
TMVAGlob::SetSignalAndBackgroundStyle( sig, bgd );
// normalise both signal and background
TMVAGlob::NormalizeHists( sig, bgd );
// frame limits (choose judicuous x range)
Float_t nrms = 4;
cout << "--- Mean and RMS (S): " << sig->GetMean() << ", " << sig->GetRMS() << endl;
cout << "--- Mean and RMS (B): " << bgd->GetMean() << ", " << bgd->GetRMS() << endl;
Float_t xmin = TMath::Max( TMath::Min(sig->GetMean() - nrms*sig->GetRMS(),
bgd->GetMean() - nrms*bgd->GetRMS() ),
sig->GetXaxis()->GetXmin() );
Float_t xmax = TMath::Min( TMath::Max(sig->GetMean() + nrms*sig->GetRMS(),
bgd->GetMean() + nrms*bgd->GetRMS() ),
sig->GetXaxis()->GetXmax() );
Float_t ymin = 0;
Float_t maxMult = (htype == CompareType) ? 1.3 : 1.2;
Float_t ymax = TMath::Max( sig->GetMaximum(), bgd->GetMaximum() )*maxMult;
// build a frame
Int_t nb = 500;
TString hFrameName(TString("frame") + methodTitle);
TObject *o = gROOT->FindObject(hFrameName);
if(o) delete o;
TH2F* frame = new TH2F( hFrameName, sig->GetTitle(),
nb, xmin, xmax, nb, ymin, ymax );
frame->GetXaxis()->SetTitle( methodTitle + ((htype == MVAType || htype == CompareType) ? " response" : "") );
if (htype == ProbaType ) frame->GetXaxis()->SetTitle( "Signal probability" );
else if (htype == RarityType ) frame->GetXaxis()->SetTitle( "Signal rarity" );
frame->GetYaxis()->SetTitle("Normalized");
TMVAGlob::SetFrameStyle( frame );
// eventually: draw the frame
frame->Draw();
c->GetPad(0)->SetLeftMargin( 0.105 );
frame->GetYaxis()->SetTitleOffset( 1.2 );
// Draw legend
TLegend *legend= new TLegend( c->GetLeftMargin(), 1 - c->GetTopMargin() - 0.12,
c->GetLeftMargin() + (htype == CompareType ? 0.40 : 0.3), 1 - c->GetTopMargin() );
legend->SetFillStyle( 1 );
legend->AddEntry(sig,TString("Signal") + ((htype == CompareType) ? " (test sample)" : ""), "F");
legend->AddEntry(bgd,TString("Background") + ((htype == CompareType) ? " (test sample)" : ""), "F");
legend->SetBorderSize(1);
legend->SetMargin( (htype == CompareType ? 0.2 : 0.3) );
legend->Draw("same");
// overlay signal and background histograms
sig->Draw("samehist");
bgd->Draw("samehist");
if (htype == CompareType) {
// if overtraining check, load additional histograms
TH1* sigOv = 0;
TH1* bgdOv = 0;
示例15: DrawResCollection
//____________________________________________________________________
void DrawResCollection(TCollection* top, const TString& name)
{
TCollection* c = GetCollection(top, name, false);
if (!c) return;
THStack* s = GetStack(c, "all");
s->SetTitle("");
DrawInPad(fBody, 0, s, "nostack", kLogy);
TLegend* l = new TLegend(.5, .75, .98, .98, "P(#it{N}_{ch})");
l->SetBorderSize(0);
// l->SetBorderMode(0);
l->SetFillColor(0);
l->SetFillStyle(0);
TIter next(s->GetHists());
TH1* h = 0;
Bool_t hasTrue = false;
while ((h = static_cast<TH1*>(next()))) {
TString n(h->GetTitle());
if (n.BeginsWith("True")) { hasTrue = true; continue; }
n.ReplaceAll("Raw P(#it{N}_{ch}) in ", "");
TLegendEntry* e = l->AddEntry("dummy", n, "p");
e->SetMarkerStyle(h->GetMarkerStyle());
}
if (hasTrue) {
TLegendEntry* e = l->AddEntry("dummy", "Raw", "p");
e->SetMarkerStyle(20);
e->SetMarkerColor(kRed+1);
e = l->AddEntry("dummy", "MC truth", "p");
e->SetMarkerStyle(24);
e->SetMarkerColor(kBlue+1);
e = l->AddEntry("dummy", "MC truth selected", "p");
e->SetMarkerStyle(24);
e->SetMarkerColor(kOrange+1);
}
fBody->cd();
l->Draw();
PrintCanvas(Form("%s results", name.Data()));
// return;
TIter nextO(c);
TObject* o = 0;
while ((o = nextO())) {
Double_t etaMin = 999;
Double_t etaMax = 999;
TCollection* bin = GetEtaBin(o, etaMin, etaMax);
if (!bin) continue;
fBody->Divide(2,3);
DrawInPad(fBody, 1, GetH1(bin, "rawDist"), "", kLogy);
DrawInPad(fBody, 1, GetH1(bin, "truthAccepted", false),
"same", kSilent);
DrawInPad(fBody, 1, GetH1(bin, "truth", false),"same", kSilent|kLegend);
DrawInPad(fBody, 2, GetH1(bin, "coverage"));
DrawInPad(fBody, 3, GetH2(bin, "corr"), "colz");
DrawInPad(fBody, 4, GetH2(bin, "response", false), "colz", kLogz|kSilent);
DrawInPad(fBody, 5, GetH1(bin, "triggerVertex", false), "", kSilent);
PrintCanvas(Form("%+5.1f < #eta < %+5.1f", etaMin, etaMax));
}
}