本文整理汇总了C++中TH1::FindBin方法的典型用法代码示例。如果您正苦于以下问题:C++ TH1::FindBin方法的具体用法?C++ TH1::FindBin怎么用?C++ TH1::FindBin使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TH1
的用法示例。
在下文中一共展示了TH1::FindBin方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: gaus1peakfit
/*============================================================================*/
void gaus1peakfit(Char_t *s, Float_t x1, Float_t x2, Float_t x3, Float_t x4)
{
Double_t par[5],epar[5],x[4],y[4];
TH1 *hist;
hist = (TH1 *) gROOT->FindObject(s);
setcanvas(1);
TCanvas *c1=(TCanvas*) gROOT->FindObject("c1");
if(c1==NULL)setcanvas(1);
c1->Clear();
hist->SetAxisRange(x1-30,x4+30);
hist->Draw();
//--**-- Linear background estimation --**--//
x[0] = x1;
x[1] = x2;
x[2] = x3;
x[3] = x4;
Int_t bin1 = hist->FindBin(x1);
y[0] = hist->GetBinContent(bin1);
Int_t bin2 = hist->FindBin(x2);
y[1] = hist->GetBinContent(bin2);
Int_t bin3 = hist->FindBin(x3);
y[2] = hist->GetBinContent(bin3);
Int_t bin4 = hist->FindBin(x4);
y[3] = hist->GetBinContent(bin4);
TGraph *g = new TGraph(4,x,y);
TF1 *fpol1 = new TF1("POL1","pol1",x1,x4);
g->Fit(fpol1,"RQN");
par[3]=fpol1->GetParameter(0);
par[4]=fpol1->GetParameter(1);
//--**-- Gaussian Peak estimation without background --**--//
TF1 *fgaus = new TF1("GAUS","gaus",x2,x3);
hist->Fit(fgaus,"RQN");
fgaus->GetParameters(&par[0]);
//--**-- Final Peak Fit with Background --**--//
TF1 *func = new TF1("FGAUS","gaus(0)+pol1(3)",x1,x4);
func->SetParameters(par);
hist->Fit(func,"R+QN");
func->GetParameters(par);
epar[0]=func->GetParError(0);
epar[1]=func->GetParError(1);
epar[2]=func->GetParError(2);
Double_t fwhm = par[2]*TMath::Sqrt(8*TMath::Log(2));
Double_t efwhm = epar[2]*TMath::Sqrt(8*TMath::Log(2));
Double_t N0 = par[0]*(TMath::Sqrt(TMath::TwoPi())*par[2]);
Double_t r0 = epar[0]/par[0];
Double_t r2 = epar[2]/par[2];
Double_t eN0= N0*TMath::Sqrt(r0*r0+r2*r2);
printf("Peak = %f +- %f; FFHM = %f +- %f; Area = %f +- %f\n",
par[1],epar[1],fwhm,efwhm,N0,eN0);
//printf("%11.4f %11.4f %11.0f %11.0f\n",
// par[1],epar[1],N0,eN0);
func->SetLineWidth(0.5);
func->SetLineStyle(1);
func->SetLineColor(4);
func->SetFillColor(4);
func->Draw("same");
}
示例2: QAcentrality
void QAcentrality(const Char_t *fdata)
{
style();
TFile *fin = TFile::Open(fdata);
TList *lin = (TList *)fin->Get("clist");
lin->ls();
TH1 *hin = (TH1 *)lin->FindObject("EvCentrDist");
Float_t sum = 1.2 * hin->Integral(hin->FindBin(0.1), hin->FindBin(79.9));
hin->Scale(1. / sum);
SetHistoStyle(hin, 20, kRed+1);
TCanvas *c = new TCanvas("cQAcentrality", "cQAcentrality", 800, 800);
TH1 * hfr = c->DrawFrame(0., 0.005, 100., 0.015);
hfr->SetTitle(";centrality percentile;events");
hin->Draw("same");
c->SaveAs(canvasPrefix+"centrality.pdf");
TH2 *hinv0 = (TH2 *)lin->FindObject("V0");
TCanvas *cv0 = new TCanvas("cQAcentralityV0", "cQAcentralityV0", 800, 800);
cv0->SetLogx();
cv0->SetLogz();
// TH1 * hfrv0 = cv0->DrawFrame(100., -0.5, 50000., 10.5);
// DrawBinLabelsY(hfrv0, kTRUE);
// hfrv0->SetTitle(";V0 signal;");
//hinv0->Draw("same,col");
hinv0->Draw("col");
cv0->SaveAs(canvasPrefix+"centralityV0.pdf");
}
示例3: fill_data
void fill_data(double e_min, double e_max, int mask)
{
const char name_pattern[] = "danss_report_v4n-sect%d-calc.root";
const char pos[3][20] = {"hUp_%d", "hMid_%d", "hDown_%d"};
char fname[1024];
char cpos[32];
int i, j;
TFile *f;
TH1* h;
double val, err;
for (i=0; i<3; i++) {
sprintf(fname, name_pattern, 3-i);
f = new TFile(fname);
if (!f->IsOpen()) return;
for (j=0; j<3; j++) {
sprintf(cpos, pos[j], mask);
h = (TH1*) f->Get(cpos);
if (!h) {
printf("Something is wrong: %d %d %s.\n", i, j, cpos);
return;
}
val = h->IntegralAndError(h->FindBin(e_min), h->FindBin(e_max), err);
DataArray.cnt[3*i+j] = val;
DataArray.ecnt[3*i+j] = err;
printf("%d %d %f +- %f\n", i, j, val, err);
}
f->Close();
}
}
示例4: fitlang
Double_t fitlang( char* hs, double klow = 18, double khigh = 40 ) {
TH1 *h = (TH1*)gDirectory->Get(hs);
if( h == NULL ){
cout << hs << " does not exist\n";
return 0;
}
double aa = h->GetEntries();//normalization
// find peak:
int ipk = h->GetMaximumBin();
double xpk = h->GetBinCenter(ipk);
double sm = xpk / 9; // sigma
double ns = sm; // noise
// fit range:
int ib0 = h->FindBin(klow);
int ib9 = h->FindBin(khigh);
double x0 = h->GetBinLowEdge(ib0);
double x9 = h->GetBinLowEdge(ib9) + h->GetBinWidth(ib9);
// create a TF1 with the range from x0 to x9 and 4 parameters
TF1 *fitFcn = new TF1( "fitFcn", fitLandauGauss, x0, x9, 4 );
fitFcn->SetParName( 0, "peak" );
fitFcn->SetParName( 1, "sigma" );
fitFcn->SetParName( 2, "area" );
fitFcn->SetParName( 3, "smear" );
fitFcn->SetNpx(500);
fitFcn->SetLineWidth(4);
fitFcn->SetLineColor(kMagenta);
// set start values:
fitFcn->SetParameter( 0, xpk ); // peak position, defined above
fitFcn->SetParameter( 1, sm ); // width
fitFcn->SetParameter( 2, aa ); // area
fitFcn->SetParameter( 3, ns ); // noise
h->Fit("fitFcn", "NQR", "ep" );// R = range from fitFcn
return fitFcn->GetParameter(0);
}
示例5:
TH1 *computeEffVsBEff(TH1 *effVsCut, TH1 *effVsCutB)
{
TH1 *h = new TH1F(Form("%s_effVsBEff", effVsCut->GetName()), "effVsBEff",
100, 0, 1);
h->SetMaximum(1.5);
h->SetMinimum(1e-3);
unsigned int n = effVsCut->GetNbinsX();
for(unsigned int bin = 1; bin <= n; bin++) {
double eff = effVsCut->GetBinContent(bin);
double error = effVsCut->GetBinError(bin);
double effB = effVsCutB->GetBinContent(bin);
h->SetBinContent(h->FindBin(effB), eff);
h->SetBinError(h->FindBin(effB), error);
// FIXME: The error in effB is not propagated
}
return h;
}
示例6:
TEST_F(EvalHistMethods, CreateHistogram1D) {
evaluator->SetNormalizationBuffer(norm);
evaluator->SetParameterBuffer(params);
TH1* hist = evaluator->CreateHistogram();
EXPECT_EQ(2, hist->GetNbinsX());
ASSERT_FLOAT_EQ(1.0, hist->Integral("width"));
ASSERT_FLOAT_EQ(1.6, hist->GetBinContent(hist->FindBin(0.25)));
ASSERT_FLOAT_EQ(0.4, hist->GetBinContent(hist->FindBin(0.75)));
delete hist;
}
示例7: DrawReport
void DrawReport(const char* psname, TObjArray* harr)
{
gStyle->SetOptFit(1);
if (!harr) harr = &histoArr;
TCanvas* cnv = new TCanvas("cl","cl",900,600);
//
TString psnm1 = psname;
if (psnm1.IsNull()) psnm1 = "clusters.ps";
TString psnm0 = psnm1.Data();
psnm0 += "[";
TString psnm2 = psnm1.Data();
psnm2 += "]";
cnv->Print(psnm0.Data());
//
TH1* clall = GetHistoClSize(0,kNPixAll,harr);
clall->SetLineColor(kRed);
clall->Draw();
TH1* clSpl = GetHistoClSize(0,kNPixSPL,harr);
clSpl->SetLineColor(kBlue);
clSpl->Draw("sames");
gPad->Modified();
gPad->Update();
SetStPadPos(clall,0.75,0.97,0.8,1.,-1,clall->GetLineColor());
SetStPadPos(clSpl,0.75,0.97,0.6,0.8,-1,clSpl->GetLineColor());
gPad->Modified();
gPad->Update();
gPad->SetLogy(1);
//
cnv->cd();
cnv->Print(psnm1.Data());
//
// plot cluster sized from 1 to 10
for (int i=1;i<=10;i++) {
if (clall->GetBinContent(clall->FindBin(i))<100) continue;
DrawNP(i,harr,cnv);
cnv->Print(psnm1.Data());
}
cnv->Print(psnm2.Data());
}
示例8: process
//.........这里部分代码省略.........
if(fMCTauMultiplicity == kMCTauTwoTaus && ntaus != 1) return true;
if(fMCTauMultiplicity == kMCTauMoreThanTwoTaus && ntaus < 2) return true;
}
else {
if(fMCTauMultiplicity == kMCTauZeroTaus && ntaus != 0) return true;
if(fMCTauMultiplicity == kMCTauOneTau && ntaus != 1) return true;
if(fMCTauMultiplicity == kMCTauTwoTaus && ntaus != 2) return true;
if(fMCTauMultiplicity == kMCTauMoreThanTwoTaus && ntaus < 3) return true;
}
if(genTaus.size() > 0)
theGenTau = genTaus[0];
}
cTauMCSelection.increment();
bool originalMuonIsWMu = false;
EmbeddingMuonCollection::Muon embeddingMuon;
if(fIsEmbedded) {
if(fMuons.size() != 1)
throw std::runtime_error("Embedding muon collection size is not 1");
embeddingMuon = fMuons.get(0);
if(embeddingMuon.p4().Pt() < 41) return true;
//std::cout << "Muon pt " << muon.p4().Pt() << std::endl;
originalMuonIsWMu = std::abs(embeddingMuon.pdgId()) == 13 && std::abs(embeddingMuon.motherPdgId()) == 24 && std::abs(embeddingMuon.grandMotherPdgId()) == 6;
if(!originalMuonIsWMu) return true;
}
cOnlyWMu.increment();
// Per-event correction for W->tau->mu
if(fIsEmbedded && fEmbeddingWTauMuWeights) {
embeddingMuon.ensureValidity();
int bin = fEmbeddingWTauMuWeights->FindBin(embeddingMuon.p4().Pt());
//std::cout << embeddingMuon.p4().Pt() << " " << bin << std::endl;
weight *= fEmbeddingWTauMuWeights->GetBinContent(bin);
fEventCounter.setWeight(weight);
}
cWTauMuWeight.increment();
// Muon trigger efficiency weighting
if(fIsEmbedded && (fEmbeddingNormalizationMode == kIDTriggerEfficiency || fEmbeddingNormalizationMode == kIDTriggerEfficiencyTauBR)) {
weight *= 1/embeddingMuon.triggerEfficiency();
fEventCounter.setWeight(weight);
}
cTriggerEffWeight.increment();
// Muon ID efficiency weighting
if(fIsEmbedded) {
weight *= 1/embeddingMuon.idEfficiency();
fEventCounter.setWeight(weight);
}
cIdEffWeight.increment();
// Weighting by arbitrary histogram, given in constructor argument
if(fIsEmbedded && fEmbeddingMuonWeights) {
embeddingMuon.ensureValidity();
int bin = fEmbeddingMuonWeights->FindFixBin(embeddingMuon.p4().Pt());
weight *= fEmbeddingMuonWeights->GetBinContent(bin);
fEventCounter.setWeight(weight);
}
cMuonWeight.increment();
// Jet selection
/*
size_t njets = fJets.size();
示例9: fin
//.........这里部分代码省略.........
cout << " Find cuts for all the centralities " << endl << endl;
const int nval=9;//number of variables to fill
char* centname[3] = {"5pStep","10pStep","20pStep"};
char* varname[nval] = {"npart","ncoll","b","standard_ecc","reactionplane_ecc","participant_ecc","R_Ollitraut","R_Geo", "R_arith"};
double vup[nval] = {499.5,2999.5,19.995,1,1,1,4,4,4};
double vlo[nval] = {-0.5,-0.5,-0.005,-1,-1,-1,0,0,0};
int vNb[nval] = {500,3000,2000,200,200,200,400,400,400};
//initialize the histograms which are used to fill the distribution of variables for each centrality
TH1* hvar[3][nval][20];
for(int i=0; i<3; i++){
int NC = 0;
if(i==0) NC = 20;
else if(i==1) NC = 10;
else if(i==2) NC = 5;
for(int ivar=0; ivar<nval; ivar++){
for(int icen=0; icen<NC; icen++){
sprintf(name,"hvar_%s_%s_cent%d",centname[i],varname[ivar],icen);
hvar[i][ivar][icen] = new TH1D(name,name,vNb[ivar],vlo[ivar],vup[ivar]);
}
}
}
double qbbcsum;
for(int i=0; i<n; i++){
if(i%1000000==0) cout << i << endl;
ch->GetEntry(i);
if(!(nHitBbc_n>=2&&nHitBbc_s>=2)) continue;//BBC trigger condition
qbbcsum = (qBBC_n+qBBC_s)/100.;
int centbin5 = FindBin(20,bbcq5,qbbcsum);
int centbin10 = FindBin(10,bbcq10,qbbcsum);
int centbin20 = FindBin(5,bbcq20,qbbcsum);
if(centbin5==-1) continue;
if(centbin10==-1) continue;
if(centbin20==-1) continue;
//find the weight according to the corresponding average efficiency.
double weight = hbbcqeff->GetBinContent(hbbcqeff->FindBin(qbbcsum));
//5 percent step
//
hvar[0][0][centbin5]->Fill(npart,weight);
hvar[0][1][centbin5]->Fill(ncoll,weight);
hvar[0][2][centbin5]->Fill(b,weight);
hvar[0][3][centbin5]->Fill(ecc_std,weight);
hvar[0][4][centbin5]->Fill(ecc_rp,weight);
hvar[0][5][centbin5]->Fill(ecc_part,weight);
hvar[0][6][centbin5]->Fill(r_oll,weight);
hvar[0][7][centbin5]->Fill(r_geo,weight);
hvar[0][8][centbin5]->Fill(r_arith,weight);
//10 percent step
//
hvar[1][0][centbin10]->Fill(npart,weight);
hvar[1][1][centbin10]->Fill(ncoll,weight);
hvar[1][2][centbin10]->Fill(b,weight);
hvar[1][3][centbin10]->Fill(ecc_std,weight);
hvar[1][4][centbin10]->Fill(ecc_rp,weight);
hvar[1][5][centbin10]->Fill(ecc_part,weight);
hvar[1][6][centbin10]->Fill(r_oll,weight);
hvar[1][7][centbin10]->Fill(r_geo,weight);
hvar[1][8][centbin10]->Fill(r_arith,weight);
示例10: gaus2peakfit
/*============================================================================*/
void gaus2peakfit(Char_t *s, Float_t x1, Float_t x2, Float_t x3, Float_t x4)
{
Double_t par[8],epar[8],x[2],y[2];
TH1 *hist;
hist = (TH1 *) gROOT->FindObject(s);
TCanvas *c1=(TCanvas*) gROOT->FindObject("c1");
if(c1==NULL)setcanvas(1);
c1->Clear();
hist->SetAxisRange(x1-30,x4+30);
hist->Draw();
//--**-- Linear background estimation --**--//
x[0] = x1;
x[1] = x4;
Int_t bin1 = hist->FindBin(x1);
y[0] = hist->GetBinContent(bin1);
Int_t bin2 = hist->FindBin(x4);
y[1] = hist->GetBinContent(bin2);
TGraph *g = new TGraph(2,x,y);
TF1 *fpol1 = new TF1("POL1","pol1",x1,x4);
g->Fit(fpol1,"RQN");
par[6]=fpol1->GetParameter(0);
par[7]=fpol1->GetParameter(1);
//--**-- Two Gaussian Peak estimation without background --**--//
fgaus1 = new TF1("m1","gaus",x1,x2);
fgaus2 = new TF1("m2","gaus",x3,x4);
hist->Fit(fgaus1,"R+QN");
hist->Fit(fgaus2,"R+QN");
fgaus1->GetParameters(&par[0]);
fgaus2->GetParameters(&par[3]);
//--**-- Final Peak Fit with Background --**--//
func = new TF1("m","gaus(0)+gaus(3)+pol1(6)",x1,x4);
func->SetParameters(par);
hist->Fit(func,"R+QN");
func->SetLineWidth(0.5);
func->SetLineStyle(1);
func->SetLineColor(4);
func->SetFillColor(4);
func->Draw("same");
func->GetParameters(par);
epar[0]=func->GetParError(0);
epar[1]=func->GetParError(1);
epar[2]=func->GetParError(2);
epar[3]=func->GetParError(3);
epar[4]=func->GetParError(4);
epar[5]=func->GetParError(5);
Double_t fwhm1 = par[2]*TMath::Sqrt(8*TMath::Log(2));
Double_t efwhm1 = epar[2]*TMath::Sqrt(8*TMath::Log(2));
Double_t N10 = par[0]*(TMath::Sqrt(TMath::TwoPi())*par[2]);
Double_t r10 = epar[0]/par[0];
Double_t r12 = epar[2]/par[2];
Double_t eN10= N10*TMath::Sqrt(r10*r10+r12*r12);
Double_t fwhm2 = par[5]*TMath::Sqrt(8*TMath::Log(2));
Double_t efwhm2 = epar[5]*TMath::Sqrt(8*TMath::Log(2));
Double_t N20 = par[3]*(TMath::Sqrt(TMath::TwoPi())*par[5]);
Double_t r20 = epar[3]/par[3];
Double_t r22 = epar[5]/par[5];
Double_t eN20= N20*TMath::Sqrt(r20*r20+r22*r22);
//printf("Peak = %f +- %f; FFHM = %f +- %f; Area = %f +- %f\n",
// par[1],epar[1],fwhm1,efwhm1,N10,eN10);
//printf("Peak = %f +- %f; FFHM = %f +- %f; Area = %f +- %f\n",
// par[4],epar[4],fwhm2,efwhm2,N20,eN20);
printf("%11.4f %11.4f %11.0f %11.0f\n",
par[1],epar[1],N10,eN10);
printf("%11.4f %11.4f %11.0f %11.0f\n",
par[4],epar[4],N20,eN20);
}
示例11: AnalysisSparse
//.........这里部分代码省略.........
// !!!!!!!!!!!!!!!!!!
ff->SetParameters(0.1, 1.02, 0.004, -25000., 0., 0., 0.);
ff->SetLineColor(hh->GetLineColor());
ff->SetLineWidth(1);
// ff->SetLineStyle(kDashed);
// where fit
Double_t fmin = 1.02-2*0.004;
Double_t fmax = 1.02+2*0.004;
// Double_t fmin = 0.995;
// Double_t fmax = 1.185;
// !!!!!!!!!!!!!!!!!!
Bool_t hisfun = kFALSE; // kFALSE = integral from function
Double_t hisfun_k = 1.0/hh->GetBinWidth(10);
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if (binhaluska)
if (i > 9) hisfun_k = 0.5/hh->GetBinWidth(10);
Printf("======= %f", hisfun_k);
// !!!!!!!!!!!!!!!!!!
// wehere integral (his or fun)
Double_t fmini = 1.02-2*0.004;
Double_t fmaxi = 1.02+2*0.004;
hh->Fit(ff, "Q", "", fmin, fmax);
hh->Fit(ff, "Q", "", fmin, fmax);
fitStatus = hh->Fit(ff, "Q", "", fmin, fmax);
TF1 *pp3 = new TF1("pp3", "[0]+x*[1]+x*x*[2]+x*x*x*[3]", fmin, fmax);
pp3->SetParameters(ff->GetParameter(3), ff->GetParameter(4),
ff->GetParameter(5), ff->GetParameter(6));
pp3->SetLineWidth(1);
pp3->SetLineColor(h3_p->GetLineColor());
pp3->Draw("same");
// ff->SetRange(fmin, fmax);
// ff->DrawCopy("same");
value = hh->Integral(hh->FindBin(fmini), hh->FindBin(fmaxi));
if (!hisfun) value = ff->Integral(fmini, fmaxi)*hisfun_k -
pp3->Integral(fmini, fmaxi)*hisfun_k;
if (value < 0) value = 0;
if ((fitStatus != 0) || (ff->GetParameter(2) > 0.1)) {
printf(" SKIP Data");
value = 0;
}
grx[count] = ptmean;
if (binhaluska) {
if (count < 10) grxE[count] = 0.25; // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
else grxE[count] = 0.50; // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
}
else
// grxE[count] = (1.30-1.10)/2.0; // !!!!!!!!!!!!!!!!!!!!!!!!!!
grxE[count] = 0.05;
gry[count] = value;
Double_t tmp1 = h1->Integral(h1->FindBin(fmini), h1->FindBin(fmaxi));
Double_t tmp2 = h3_p->Integral(h3_p->FindBin(fmini), h3_p->FindBin(fmaxi));
Double_t tmp_sg = tmp1 - tmp2;
Double_t tmp_bg = tmp2;
// if ((tmp_sg <= -tmp_bg) || (tmp_bg < 33.0)) {
// gry3[count] = 0.0;
// gry4[count] = 0.0;
// }
// else {
gry3[count] = tmp_sg/tmp_bg;
gry4[count] = tmp_sg/TMath::Sqrt(tmp_sg + tmp_bg);
// }
示例12: nll
void Fit::nll(int& ndim, double* gout, double& result, double* par, int flags) {
size_t n = Fit::signals.size();
result = 0;
// make summed fit histogram
TH1* hfit = (TH1*) signals[0].histogram->Clone("hfit");
hfit->Reset();
for (size_t i=0; i<n; i++) {
TH1* h = Fit::signals.at(i).histogram;
h->Scale(1.0/h->Integral());
hfit->Add(h, Fit::norms[i] * par[i]);
}
// loop over bins
if (hfit->IsA() == TH2F::Class()) {
TH2F* h2 = dynamic_cast<TH2F*>(hfit);
for (int i=1; i<h2->GetNbinsX(); i++) {
if (i < h2->GetXaxis()->FindBin(Fit::r_range.min) || i > h2->GetXaxis()->FindBin(Fit::r_range.max)) {
continue;
}
for (int j=1; j<h2->GetNbinsY(); j++) {
if (j < h2->GetYaxis()->FindBin(Fit::e_range.min) || j > h2->GetYaxis()->FindBin(Fit::e_range.max)) {
continue;
}
double nexp = h2->GetBinContent(i, j);
double nobs = dynamic_cast<TH2F*>(Fit::data)->GetBinContent(i, j);
result += (nexp - nobs * TMath::Log(TMath::Max(1e-12, nexp)));
//std::cout << "- " << nexp << " " << nobs << " " << TMath::Log(nexp) << " // " << result << std::endl;
}
}
}
else {
for (int i=1; i<hfit->GetNbinsX(); i++) {
if (i < hfit->FindBin(Fit::e_range.min) || i > hfit->FindBin(Fit::e_range.max)) {
continue;
}
double nexp = hfit->GetBinContent(i);
double nobs = Fit::data->GetBinContent(i);
result += (nexp - nobs * TMath::Log(TMath::Max(1e-12, nexp)));
//std::cout << "- " << nexp << " " << nobs << " " << TMath::Log(nexp) << " // " << result << std::endl;
}
}
// constraints
for (size_t i=0; i<n; i++) {
if (Fit::signals.at(i).constraint > 0) {
result += 0.5 * TMath::Power((par[i]-1.0)
/ Fit::signals.at(i).constraint, 2);
}
}
delete hfit;
#ifdef DEBUG
// print parameters at each iteration
std::cout << "+ ";
for (size_t i=0; i<n; i++) {
std::cout << par[i] * Fit::signals.at(i).rate << " (" << par[i] << ") \t";
}
std::cout << result << std::endl;
#endif
}
示例13: printGlobalPValueOfObservation
// The probability to find a value of the test statistic equal or
// worse than the one obtained with the observed yields
void ToyExperiments::printGlobalPValueOfObservation(unsigned int nExperiments) const {
std::cout << "Performing " << nExperiments << " toy experiments to compute global p-value of observation ... " << std::flush;
// The test statistic
TH1* hTestStat = new TH1D("hTestStat","",10000*Parameters::nBins(),0,1000);
std::vector<unsigned int> obs(Parameters::nBins(),0);
// Minimal value (in standard deviations) allowed for
//correlated fluctuation
const double minCorr = findMinValidRandomNumberForCorrelatedUncertainties();
// Throw mean values
for(unsigned int p = 0; p < nExperiments; ++p) {
// Throw one (normalized) random number for correlated
// uncertainties that is valid in all bins
double rCorr = rand_->Gaus(0.,1.);
while( rCorr <= minCorr ) {
rCorr = rand_->Gaus(0.,1.);
}
// Loop over all bins and get individual predictions
for(unsigned int bin = 0; bin < Parameters::nBins(); ++bin) {
double prediction = -1.;
bool negativePrediction = true;
while( negativePrediction ) {
// Throw one (normalized) random number for uncorrelated
// uncertainties that is valid in this bin only
double rUncorr = rand_->Gaus(0.,1.);
// Scale the normalized random numbers by the uncertainties' size
// to obtain variation of yield
double uncorrVar = rUncorr * uncorrelatedUncerts_.at(bin);
double corrVar = rCorr * correlatedUncerts_.at(bin);
// Add variations to yield
prediction = meanPredictions_.at(bin) + uncorrVar + corrVar;
// Check if prediction is positive
if( prediction >= 0. ) {
negativePrediction = false;
}
}
// Throw predicted yields from Poisson with
// this mean
obs.at(bin) = rand_->Poisson(prediction);
} // End of loop over bins
hTestStat->Fill(testStatistic(obs));
}
std::cout << "ok" << std::endl;
std::cout << "\n\n----- Global p-value of observation -----" << std::endl;
double tSObs = testStatistic(observedYields_);
int binTSObs = hTestStat->FindBin(tSObs);
int binTSTot = hTestStat->GetNbinsX()+1; // Include overflows
double gpVal = hTestStat->Integral(binTSObs,binTSTot)/hTestStat->Integral(1,binTSTot);
if( binTSObs == binTSTot ) {
std::cerr << " ERROR: observed value of test statistic out of histogram range" << std::endl;
} else if( hTestStat->GetBinContent(binTSTot) > 0 ) {
std::cerr << " WARNING: distribution of test statistic has overflows (N = " << hTestStat->GetBinContent(binTSTot) << ")" << std::endl;
}
std::cout << " observed value of test statistic : " << tSObs << std::endl;
std::cout << " global p-value (including correlations) : " << gpVal << " (" << TMath::NormQuantile(1.-gpVal) << "sig)" << std::endl;
hTestStat->Draw();
gPad->SetLogy();
gPad->SaveAs("TestStatistic.pdf");
delete hTestStat;
}