本文整理汇总了C++中SpinBlock::perturb_op_components方法的典型用法代码示例。如果您正苦于以下问题:C++ SpinBlock::perturb_op_components方法的具体用法?C++ SpinBlock::perturb_op_components怎么用?C++ SpinBlock::perturb_op_components使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SpinBlock
的用法示例。
在下文中一共展示了SpinBlock::perturb_op_components方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: dotSystem
void SpinAdapted::mps_nevpt::type1::Startup(const SweepParams &sweepParams, const bool &forward, perturber& pb, int baseState) {
#ifndef SERIAL
mpi::communicator world;
#endif
assert(forward);
SpinBlock system;
system.nonactive_orb() =pb.orb();
bool restart=false, warmUp = false;
int forward_starting_size=1, backward_starting_size=0, restartSize =0;
InitBlocks::InitStartingBlock(system, forward, pb.wavenumber(), baseState, forward_starting_size, backward_starting_size, restartSize, restart, warmUp, 0,pb.braquanta, pb.ketquanta);
SpinBlock::store (forward, system.get_sites(), system, pb.wavenumber(), baseState); // if restart, just restoring an existing block --
for (int i=0; i<mps_nevpt::sweepIters; i++) {
SpinBlock newSystem;
SpinBlock dotSystem(i+1,i+1,pb.orb(),false);
system.addAdditionalCompOps();
//newSystem.default_op_components(true, system, dotSystem, true, true, false);
newSystem.perturb_op_components(false, system, dotSystem, pb);
newSystem.setstoragetype(DISTRIBUTED_STORAGE);
newSystem.BuildSumBlock(LessThanQ, system, dotSystem, pb.braquanta, pb.ketquanta);
newSystem.printOperatorSummary();
//SpinBlock Environment, big;
//SpinBlock::restore (!forward, newSystem.get_complementary_sites() , Environment, baseState, baseState);
//TODO
//SpinBlock::restore (!forward, newSystem.get_complementary_sites() , Environment,sweepParams.current_root(),sweepParams.current_root());
//big.BuildSumBlock(PARTICLE_SPIN_NUMBER_CONSTRAINT, newSystem, Environment, pb.braquanta, pb.ketquanta);
//StateInfo envStateInfo;
StateInfo ketStateInfo;
StateInfo braStateInfo;
StateInfo halfbraStateInfo;// It has the same left and right StateInfo as braStateInfo. However, its total quanta is pb.ketquanta.
// It is used to project solution into to braStateInfo.
std::vector<Wavefunction> solution; solution.resize(1);
std::vector<Wavefunction> outputState; outputState.resize(1);
std::vector<Wavefunction> solutionprojector; solutionprojector.resize(1);
solution[0].LoadWavefunctionInfo(ketStateInfo, newSystem.get_sites(), baseState);
#ifndef SERIAL
broadcast(world, ketStateInfo, 0);
broadcast(world, solution, 0);
#endif
outputState[0].AllowQuantaFor(newSystem.get_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.braquanta);
outputState[0].set_onedot(solution[0].get_onedot());
outputState[0].Clear();
solutionprojector[0].AllowQuantaFor(newSystem.get_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.ketquanta);
solutionprojector[0].set_onedot(solution[0].get_onedot());
solutionprojector[0].Clear();
//TensorProduct (newSystem.get_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.braquanta[0], EqualQ, braStateInfo);
//TODO
//TensorProduct do not support const StateInfo&
TensorProduct (newSystem.set_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.braquanta[0], EqualQ, braStateInfo);
TensorProduct (newSystem.set_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.ketquanta[0], EqualQ, halfbraStateInfo);
//StateInfo::restore(forward, environmentsites, envStateInfo, baseState);
//DiagonalMatrix e;
//if(i == 0)
// GuessWave::guess_wavefunctions(solution, e, big, TRANSPOSE, true, true, 0.0, baseState);
//else
// GuessWave::guess_wavefunctions(solution, e, big, TRANSFORM, true, true, 0.0, baseState);
//SpinAdapted::operatorfunctions::Product(&newSystem, ccd, solution[0], &ketStateInfo, stateb.getw(), temp, SpinQuantum(0, SpinSpace(0), IrrepSpace(0)), true, 1.0);
boost::shared_ptr<SparseMatrix> O;
if (pb.type() == TwoPerturbType::Va)
O = newSystem.get_op_array(CDD_SUM).get_local_element(0)[0]->getworkingrepresentation(&newSystem);
if (pb.type() == TwoPerturbType::Vi)
O = newSystem.get_op_array(CCD_SUM).get_local_element(0)[0]->getworkingrepresentation(&newSystem);
boost::shared_ptr<SparseMatrix> overlap = newSystem.get_op_array(OVERLAP).get_local_element(0)[0]->getworkingrepresentation(&newSystem);
SpinAdapted::operatorfunctions::TensorMultiply(*O, &braStateInfo, &ketStateInfo , solution[0], outputState[0], pb.delta, true, 1.0);
SpinAdapted::operatorfunctions::TensorMultiply(*overlap, &halfbraStateInfo, &ketStateInfo , solution[0], solutionprojector[0], overlap->get_deltaQuantum(0), true, 1.0);
DensityMatrix bratracedMatrix(newSystem.get_braStateInfo());
bratracedMatrix.allocate(newSystem.get_braStateInfo());
double norm = DotProduct(outputState[0], outputState[0]);
if(norm > NUMERICAL_ZERO)
SpinAdapted::operatorfunctions::MultiplyProduct(outputState[0], Transpose(const_cast<Wavefunction&> (outputState[0])), bratracedMatrix, 0.5/norm);
SpinAdapted::operatorfunctions::MultiplyProduct(solutionprojector[0], Transpose(const_cast<Wavefunction&> (solutionprojector[0])), bratracedMatrix, 0.5);
std::vector<Matrix> brarotateMatrix, ketrotateMatrix;
LoadRotationMatrix (newSystem.get_sites(), ketrotateMatrix, baseState);
double error;
if (!mpigetrank())
error = makeRotateMatrix(bratracedMatrix, brarotateMatrix, sweepParams.get_keep_states(), sweepParams.get_keep_qstates());
#ifndef SERIAL
broadcast(world, ketrotateMatrix, 0);
broadcast(world, brarotateMatrix, 0);
#endif
SaveRotationMatrix (newSystem.get_sites(), brarotateMatrix, pb.wavenumber());
newSystem.transform_operators(brarotateMatrix,ketrotateMatrix);
SpinBlock::store (forward, newSystem.get_sites(), newSystem, pb.wavenumber(), baseState); // if restart, just restoring an existing block --
system=newSystem;
}
//TODO
//.........这里部分代码省略.........