本文整理汇总了C++中SpinBlock::nonactive_orb方法的典型用法代码示例。如果您正苦于以下问题:C++ SpinBlock::nonactive_orb方法的具体用法?C++ SpinBlock::nonactive_orb怎么用?C++ SpinBlock::nonactive_orb使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SpinBlock
的用法示例。
在下文中一共展示了SpinBlock::nonactive_orb方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
void SpinAdapted::InitBlocks::InitBigBlock(SpinBlock &leftBlock, SpinBlock &rightBlock, SpinBlock &big, const std::vector<SpinQuantum>& braquanta, const std::vector<SpinQuantum>& ketquanta)
{
//set big block components
big.set_integralIndex() = leftBlock.get_integralIndex();
big.nonactive_orb() = leftBlock.nonactive_orb();
big.set_big_components();
// build the big block
if (dmrginp.hamiltonian() == BCS) {
if(braquanta.size()!=0)
big.BuildSumBlock(SPIN_NUMBER_CONSTRAINT, leftBlock, rightBlock,braquanta,ketquanta);
else
big.BuildSumBlock(SPIN_NUMBER_CONSTRAINT, leftBlock, rightBlock);
} else {
if(braquanta.size()!=0)
big.BuildSumBlock(PARTICLE_SPIN_NUMBER_CONSTRAINT, leftBlock, rightBlock,braquanta,ketquanta);
else
big.BuildSumBlock(PARTICLE_SPIN_NUMBER_CONSTRAINT, leftBlock, rightBlock);
}
}
示例2: TensorProduct
void SpinAdapted::InitBlocks::InitNewEnvironmentBlock(SpinBlock &environment, SpinBlock& environmentDot, SpinBlock &newEnvironment,
const SpinBlock &system, SpinBlock &systemDot, int leftState, int rightState,
const int &sys_add, const int &env_add, const bool &forward, const bool &direct,
const bool &onedot, const bool &nexact, const bool &useSlater, int integralIndex,
bool haveNormops, bool haveCompops, const bool& dot_with_sys, int constraint, const std::vector<SpinQuantum>& braquanta, const std::vector<SpinQuantum>& ketquanta) {
// now initialise environment Dot
int systemDotStart, systemDotEnd, environmentDotStart, environmentDotEnd, environmentStart, environmentEnd;
int systemDotSize = sys_add - 1;
int environmentDotSize = env_add - 1;
if (forward) {
systemDotStart = dmrginp.spinAdapted() ? *system.get_sites().rbegin () + 1 : (*system.get_sites().rbegin ())/2 + 1 ;
systemDotEnd = systemDotStart + systemDotSize;
environmentDotStart = systemDotEnd + 1;
environmentDotEnd = environmentDotStart + environmentDotSize;
environmentStart = environmentDotEnd + 1;
environmentEnd = dmrginp.spinAdapted() ? dmrginp.last_site() - 1 : dmrginp.last_site()/2 - 1;
} else {
systemDotStart = dmrginp.spinAdapted() ? system.get_sites()[0] - 1 : (system.get_sites()[0])/2 - 1 ;
systemDotEnd = systemDotStart - systemDotSize;
environmentDotStart = systemDotEnd - 1;
environmentDotEnd = environmentDotStart - environmentDotSize;
environmentStart = environmentDotEnd - 1;
environmentEnd = 0;
}
std::vector<int> environmentSites;
environmentSites.resize(abs(environmentEnd - environmentStart) + 1);
for (int i = 0; i < abs(environmentEnd - environmentStart) + 1; ++i) *(environmentSites.begin () + i) = min(environmentStart,environmentEnd) + i;
// now initialise environment
if (useSlater) { // for FCI
StateInfo system_stateinfo = system.get_stateInfo();
StateInfo sysdot_stateinfo = systemDot.get_stateInfo();
StateInfo tmp;
TensorProduct (system_stateinfo, sysdot_stateinfo, tmp, NO_PARTICLE_SPIN_NUMBER_CONSTRAINT);
// tmp has the system+dot quantum numbers
tmp.CollectQuanta ();
// exact environment
if (dmrginp.do_fci() || environmentSites.size() == nexact) {
if ((!dot_with_sys && onedot) || !onedot) { // environment has dot
environment.set_integralIndex() = integralIndex;
environment.default_op_components(!forward, leftState==rightState);
environment.setstoragetype(DISTRIBUTED_STORAGE);
environment.BuildTensorProductBlock(environmentSites); // exact block
SpinBlock::store (true, environmentSites, environment, leftState, rightState);
}
else { // environment has no dot, so newEnv = Env
newEnvironment.set_integralIndex() = integralIndex;
newEnvironment.default_op_components(!forward, leftState==rightState);
newEnvironment.setstoragetype(DISTRIBUTED_STORAGE);
newEnvironment.BuildTensorProductBlock(environmentSites);
SpinBlock::store (true, environmentSites, newEnvironment, leftState, rightState);
}
} else if (dmrginp.warmup() == LOCAL2 || dmrginp.warmup() == LOCAL3 || dmrginp.warmup() == LOCAL4) {
int nactiveSites, ncoreSites;
if (dmrginp.warmup() == LOCAL2) {
nactiveSites = 1;
} else if (dmrginp.warmup() == LOCAL3) {
nactiveSites = 2;
} else if (dmrginp.warmup() == LOCAL4) {
nactiveSites = 3;
}
if (dot_with_sys && onedot) {
nactiveSites += 1;
}
if (nactiveSites > environmentSites.size()) {
nactiveSites = environmentSites.size();
}
ncoreSites = environmentSites.size() - nactiveSites;
// figure out what sites are in the active and core sites
int environmentActiveEnd = forward ? environmentStart + nactiveSites - 1 : environmentStart - nactiveSites + 1;
int environmentCoreStart = forward ? environmentActiveEnd + 1 : environmentActiveEnd - 1;
std::vector<int> activeSites(nactiveSites), coreSites(ncoreSites);
for (int i = 0; i < nactiveSites; ++i) {
activeSites[i] = min(environmentStart,environmentActiveEnd) + i;
}
for (int i = 0; i < ncoreSites; ++i) {
coreSites[i] = min(environmentCoreStart,environmentEnd) + i;
}
SpinBlock environmentActive, environmentCore;
environmentActive.nonactive_orb() = system.nonactive_orb();
environmentCore.nonactive_orb() = system.nonactive_orb();
if (coreSites.size() > 0) {
environmentActive.set_integralIndex() = integralIndex;
environmentCore.set_integralIndex() = integralIndex;
environmentActive.default_op_components(!forward, leftState==rightState);
environmentActive.setstoragetype(DISTRIBUTED_STORAGE);
environmentCore.default_op_components(!forward, leftState==rightState);
environmentCore.setstoragetype(DISTRIBUTED_STORAGE);
environmentActive.BuildTensorProductBlock(activeSites);
environmentCore.BuildSingleSlaterBlock(coreSites);
dmrginp.datatransfer -> start();
//.........这里部分代码省略.........
示例3: dotSystem
void SpinAdapted::mps_nevpt::type1::Startup(const SweepParams &sweepParams, const bool &forward, perturber& pb, int baseState) {
#ifndef SERIAL
mpi::communicator world;
#endif
assert(forward);
SpinBlock system;
system.nonactive_orb() =pb.orb();
bool restart=false, warmUp = false;
int forward_starting_size=1, backward_starting_size=0, restartSize =0;
InitBlocks::InitStartingBlock(system, forward, pb.wavenumber(), baseState, forward_starting_size, backward_starting_size, restartSize, restart, warmUp, 0,pb.braquanta, pb.ketquanta);
SpinBlock::store (forward, system.get_sites(), system, pb.wavenumber(), baseState); // if restart, just restoring an existing block --
for (int i=0; i<mps_nevpt::sweepIters; i++) {
SpinBlock newSystem;
SpinBlock dotSystem(i+1,i+1,pb.orb(),false);
system.addAdditionalCompOps();
//newSystem.default_op_components(true, system, dotSystem, true, true, false);
newSystem.perturb_op_components(false, system, dotSystem, pb);
newSystem.setstoragetype(DISTRIBUTED_STORAGE);
newSystem.BuildSumBlock(LessThanQ, system, dotSystem, pb.braquanta, pb.ketquanta);
newSystem.printOperatorSummary();
//SpinBlock Environment, big;
//SpinBlock::restore (!forward, newSystem.get_complementary_sites() , Environment, baseState, baseState);
//TODO
//SpinBlock::restore (!forward, newSystem.get_complementary_sites() , Environment,sweepParams.current_root(),sweepParams.current_root());
//big.BuildSumBlock(PARTICLE_SPIN_NUMBER_CONSTRAINT, newSystem, Environment, pb.braquanta, pb.ketquanta);
//StateInfo envStateInfo;
StateInfo ketStateInfo;
StateInfo braStateInfo;
StateInfo halfbraStateInfo;// It has the same left and right StateInfo as braStateInfo. However, its total quanta is pb.ketquanta.
// It is used to project solution into to braStateInfo.
std::vector<Wavefunction> solution; solution.resize(1);
std::vector<Wavefunction> outputState; outputState.resize(1);
std::vector<Wavefunction> solutionprojector; solutionprojector.resize(1);
solution[0].LoadWavefunctionInfo(ketStateInfo, newSystem.get_sites(), baseState);
#ifndef SERIAL
broadcast(world, ketStateInfo, 0);
broadcast(world, solution, 0);
#endif
outputState[0].AllowQuantaFor(newSystem.get_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.braquanta);
outputState[0].set_onedot(solution[0].get_onedot());
outputState[0].Clear();
solutionprojector[0].AllowQuantaFor(newSystem.get_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.ketquanta);
solutionprojector[0].set_onedot(solution[0].get_onedot());
solutionprojector[0].Clear();
//TensorProduct (newSystem.get_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.braquanta[0], EqualQ, braStateInfo);
//TODO
//TensorProduct do not support const StateInfo&
TensorProduct (newSystem.set_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.braquanta[0], EqualQ, braStateInfo);
TensorProduct (newSystem.set_braStateInfo(), *(ketStateInfo.rightStateInfo), pb.ketquanta[0], EqualQ, halfbraStateInfo);
//StateInfo::restore(forward, environmentsites, envStateInfo, baseState);
//DiagonalMatrix e;
//if(i == 0)
// GuessWave::guess_wavefunctions(solution, e, big, TRANSPOSE, true, true, 0.0, baseState);
//else
// GuessWave::guess_wavefunctions(solution, e, big, TRANSFORM, true, true, 0.0, baseState);
//SpinAdapted::operatorfunctions::Product(&newSystem, ccd, solution[0], &ketStateInfo, stateb.getw(), temp, SpinQuantum(0, SpinSpace(0), IrrepSpace(0)), true, 1.0);
boost::shared_ptr<SparseMatrix> O;
if (pb.type() == TwoPerturbType::Va)
O = newSystem.get_op_array(CDD_SUM).get_local_element(0)[0]->getworkingrepresentation(&newSystem);
if (pb.type() == TwoPerturbType::Vi)
O = newSystem.get_op_array(CCD_SUM).get_local_element(0)[0]->getworkingrepresentation(&newSystem);
boost::shared_ptr<SparseMatrix> overlap = newSystem.get_op_array(OVERLAP).get_local_element(0)[0]->getworkingrepresentation(&newSystem);
SpinAdapted::operatorfunctions::TensorMultiply(*O, &braStateInfo, &ketStateInfo , solution[0], outputState[0], pb.delta, true, 1.0);
SpinAdapted::operatorfunctions::TensorMultiply(*overlap, &halfbraStateInfo, &ketStateInfo , solution[0], solutionprojector[0], overlap->get_deltaQuantum(0), true, 1.0);
DensityMatrix bratracedMatrix(newSystem.get_braStateInfo());
bratracedMatrix.allocate(newSystem.get_braStateInfo());
double norm = DotProduct(outputState[0], outputState[0]);
if(norm > NUMERICAL_ZERO)
SpinAdapted::operatorfunctions::MultiplyProduct(outputState[0], Transpose(const_cast<Wavefunction&> (outputState[0])), bratracedMatrix, 0.5/norm);
SpinAdapted::operatorfunctions::MultiplyProduct(solutionprojector[0], Transpose(const_cast<Wavefunction&> (solutionprojector[0])), bratracedMatrix, 0.5);
std::vector<Matrix> brarotateMatrix, ketrotateMatrix;
LoadRotationMatrix (newSystem.get_sites(), ketrotateMatrix, baseState);
double error;
if (!mpigetrank())
error = makeRotateMatrix(bratracedMatrix, brarotateMatrix, sweepParams.get_keep_states(), sweepParams.get_keep_qstates());
#ifndef SERIAL
broadcast(world, ketrotateMatrix, 0);
broadcast(world, brarotateMatrix, 0);
#endif
SaveRotationMatrix (newSystem.get_sites(), brarotateMatrix, pb.wavenumber());
newSystem.transform_operators(brarotateMatrix,ketrotateMatrix);
SpinBlock::store (forward, newSystem.get_sites(), newSystem, pb.wavenumber(), baseState); // if restart, just restoring an existing block --
system=newSystem;
}
//TODO
//.........这里部分代码省略.........
示例4: if
void SpinAdapted::InitBlocks::InitStartingBlock (SpinBlock& startingBlock, const bool &forward, int leftState, int rightState,
const int & forward_starting_size, const int &backward_starting_size,
const int& restartSize, const bool &restart, const bool& warmUp, int integralIndex, const vector<SpinQuantum>& braquanta, const vector<SpinQuantum>& ketquanta)
{
if (restart && restartSize != 1)
{
int len = restart? restartSize : forward_starting_size;
vector<int> sites(len);
if (forward)
for (int i=0; i<len; i++)
sites[i] = i;
else
for (int i=0; i<len; i++)
sites[i] = dmrginp.last_site() - len +i ;
if (restart)
SpinBlock::restore (forward, sites, startingBlock, leftState, rightState);
else
SpinBlock::restore (true, sites, startingBlock, leftState, rightState);
}
else if (forward)
{
if(startingBlock.nonactive_orb().size()!=0)
startingBlock = SpinBlock(0, forward_starting_size - 1,startingBlock.nonactive_orb() , true);
else
startingBlock = SpinBlock(0, forward_starting_size - 1, integralIndex, leftState==rightState, true);
if (dmrginp.add_noninteracting_orbs() && dmrginp.molecule_quantum().get_s().getirrep() != 0 && dmrginp.spinAdapted())
{
SpinQuantum s = dmrginp.molecule_quantum();
s = SpinQuantum(s.get_s().getirrep(), s.get_s(), IrrepSpace(0));
int qs = 1, ns = 1;
StateInfo addstate(ns, &s, &qs);
SpinBlock dummyblock(addstate, integralIndex);
SpinBlock newstartingBlock;
newstartingBlock.set_integralIndex() = integralIndex;
newstartingBlock.default_op_components(false, startingBlock, dummyblock, true, true, leftState==rightState);
newstartingBlock.setstoragetype(LOCAL_STORAGE);
if( braquanta.size()!= 0)
newstartingBlock.BuildSumBlock(NO_PARTICLE_SPIN_NUMBER_CONSTRAINT, startingBlock, dummyblock,braquanta,ketquanta);
else
newstartingBlock.BuildSumBlock(NO_PARTICLE_SPIN_NUMBER_CONSTRAINT, startingBlock, dummyblock);
startingBlock.clear();
startingBlock = newstartingBlock;
}
}
else
{
std::vector<int> backwardSites;
if(dmrginp.spinAdapted()) {
for (int i = 0; i < backward_starting_size; ++i)
backwardSites.push_back (dmrginp.last_site() - i - 1);
}
else {
for (int i = 0; i < backward_starting_size; ++i)
backwardSites.push_back (dmrginp.last_site()/2 - i - 1);
}
sort (backwardSites.begin (), backwardSites.end ());
startingBlock.set_integralIndex() = integralIndex;
startingBlock.default_op_components(false, leftState==rightState);
startingBlock.BuildTensorProductBlock (backwardSites);
}
}
示例5: finalEnergy
double SpinAdapted::mps_nevpt::type1::do_one(SweepParams &sweepParams, const bool &warmUp, const bool &forward, const bool &restart, const int &restartSize, perturber& pb, int baseState)
{
int integralIndex = 0;
SpinBlock system;
system.nonactive_orb() = pb.orb();
const int nroots = dmrginp.nroots(sweepParams.get_sweep_iter());
std::vector<double> finalEnergy(nroots,-1.0e10);
std::vector<double> finalEnergy_spins(nroots,0.);
double finalError = 0.;
sweepParams.set_sweep_parameters();
// a new renormalisation sweep routine
if (forward)
if (dmrginp.outputlevel() > 0)
pout << "\t\t\t Starting sweep "<< sweepParams.set_sweep_iter()<<" in forwards direction"<<endl;
else
if (dmrginp.outputlevel() > 0)
{
pout << "\t\t\t Starting sweep "<< sweepParams.set_sweep_iter()<<" in backwards direction" << endl;
pout << "\t\t\t ============================================================================ " << endl;
}
InitBlocks::InitStartingBlock (system,forward, baseState, pb.wavenumber(), sweepParams.get_forward_starting_size(), sweepParams.get_backward_starting_size(), restartSize, restart, warmUp, integralIndex, pb.braquanta, pb.ketquanta);
if(!restart)
sweepParams.set_block_iter() = 0;
if (dmrginp.outputlevel() > 0)
pout << "\t\t\t Starting block is :: " << endl << system << endl;
SpinBlock::store (forward, system.get_sites(), system, pb.wavenumber(), baseState); // if restart, just restoring an existing block --
sweepParams.savestate(forward, system.get_sites().size());
bool dot_with_sys = true;
vector<int> syssites = system.get_sites();
if (restart)
{
if (forward && system.get_complementary_sites()[0] >= dmrginp.last_site()/2)
dot_with_sys = false;
if (!forward && system.get_sites()[0]-1 < dmrginp.last_site()/2)
dot_with_sys = false;
}
if (dmrginp.outputlevel() > 0)
mcheck("at the very start of sweep"); // just timer
for (; sweepParams.get_block_iter() < sweepParams.get_n_iters(); ) // get_n_iters() returns the number of blocking iterations needed in one sweep
{
if (dmrginp.outputlevel() > 0)
{
pout << "\t\t\t Block Iteration :: " << sweepParams.get_block_iter() << endl;
pout << "\t\t\t ----------------------------" << endl;
}
if (dmrginp.outputlevel() > 0) {
if (forward)
{
pout << "\t\t\t Current direction is :: Forwards " << endl;
}
else
{
pout << "\t\t\t Current direction is :: Backwards " << endl;
}
}
if (sweepParams.get_block_iter() != 0)
sweepParams.set_guesstype() = TRANSFORM;
else
sweepParams.set_guesstype() = TRANSPOSE;
if (dmrginp.outputlevel() > 0)
pout << "\t\t\t Blocking and Decimating " << endl;
SpinBlock newSystem; // new system after blocking and decimating
newSystem.nonactive_orb() = pb.orb();
//Need to substitute by:
// if (warmUp )
// Startup(sweepParams, system, newSystem, dot_with_sys, pb.wavenumber(), baseState);
// else {
// BlockDecimateAndCompress (sweepParams, system, newSystem, false, dot_with_sys, pb.wavenumber(), baseState);
// }
BlockDecimateAndCompress (sweepParams, system, newSystem, warmUp, dot_with_sys,pb, baseState);
//Need to substitute by?
system = newSystem;
if (dmrginp.outputlevel() > 0){
pout << system<<endl;
pout << system.get_braStateInfo()<<endl;
system.printOperatorSummary();
}
//system size is going to be less than environment size
if (forward && system.get_complementary_sites()[0] >= dmrginp.last_site()/2)
dot_with_sys = false;
if (!forward && system.get_sites()[0]-1 < dmrginp.last_site()/2)
dot_with_sys = false;
//.........这里部分代码省略.........