本文整理汇总了C++中SpinBlock::default_op_components方法的典型用法代码示例。如果您正苦于以下问题:C++ SpinBlock::default_op_components方法的具体用法?C++ SpinBlock::default_op_components怎么用?C++ SpinBlock::default_op_components使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SpinBlock
的用法示例。
在下文中一共展示了SpinBlock::default_op_components方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
void SpinAdapted::InitBlocks::InitNewSystemBlock(SpinBlock &system, SpinBlock &systemDot, SpinBlock &newSystem, int leftState, int rightState, const int& sys_add, const bool &direct, int integralIndex, const Storagetype &storage, bool haveNormops, bool haveCompops, int constraint)
{
newSystem.set_integralIndex() = integralIndex;
newSystem.default_op_components(direct, system, systemDot, haveNormops, haveCompops, leftState==rightState);
newSystem.setstoragetype(storage);
newSystem.BuildSumBlock (constraint, system, systemDot);
p2out << "\t\t\t NewSystem block " << endl << newSystem << endl;
newSystem.printOperatorSummary();
}
示例2: if
void SpinAdapted::InitBlocks::InitStartingBlock (SpinBlock& startingBlock, const bool &forward, int leftState, int rightState,
const int & forward_starting_size, const int &backward_starting_size,
const int& restartSize, const bool &restart, const bool& warmUp, int integralIndex, const vector<SpinQuantum>& braquanta, const vector<SpinQuantum>& ketquanta)
{
if (restart && restartSize != 1)
{
int len = restart? restartSize : forward_starting_size;
vector<int> sites(len);
if (forward)
for (int i=0; i<len; i++)
sites[i] = i;
else
for (int i=0; i<len; i++)
sites[i] = dmrginp.last_site() - len +i ;
if (restart)
SpinBlock::restore (forward, sites, startingBlock, leftState, rightState);
else
SpinBlock::restore (true, sites, startingBlock, leftState, rightState);
}
else if (forward)
{
if(startingBlock.nonactive_orb().size()!=0)
startingBlock = SpinBlock(0, forward_starting_size - 1,startingBlock.nonactive_orb() , true);
else
startingBlock = SpinBlock(0, forward_starting_size - 1, integralIndex, leftState==rightState, true);
if (dmrginp.add_noninteracting_orbs() && dmrginp.molecule_quantum().get_s().getirrep() != 0 && dmrginp.spinAdapted())
{
SpinQuantum s = dmrginp.molecule_quantum();
s = SpinQuantum(s.get_s().getirrep(), s.get_s(), IrrepSpace(0));
int qs = 1, ns = 1;
StateInfo addstate(ns, &s, &qs);
SpinBlock dummyblock(addstate, integralIndex);
SpinBlock newstartingBlock;
newstartingBlock.set_integralIndex() = integralIndex;
newstartingBlock.default_op_components(false, startingBlock, dummyblock, true, true, leftState==rightState);
newstartingBlock.setstoragetype(LOCAL_STORAGE);
if( braquanta.size()!= 0)
newstartingBlock.BuildSumBlock(NO_PARTICLE_SPIN_NUMBER_CONSTRAINT, startingBlock, dummyblock,braquanta,ketquanta);
else
newstartingBlock.BuildSumBlock(NO_PARTICLE_SPIN_NUMBER_CONSTRAINT, startingBlock, dummyblock);
startingBlock.clear();
startingBlock = newstartingBlock;
}
}
else
{
std::vector<int> backwardSites;
if(dmrginp.spinAdapted()) {
for (int i = 0; i < backward_starting_size; ++i)
backwardSites.push_back (dmrginp.last_site() - i - 1);
}
else {
for (int i = 0; i < backward_starting_size; ++i)
backwardSites.push_back (dmrginp.last_site()/2 - i - 1);
}
sort (backwardSites.begin (), backwardSites.end ());
startingBlock.set_integralIndex() = integralIndex;
startingBlock.default_op_components(false, leftState==rightState);
startingBlock.BuildTensorProductBlock (backwardSites);
}
}
示例3: TensorProduct
void SpinAdapted::InitBlocks::InitNewEnvironmentBlock(SpinBlock &environment, SpinBlock& environmentDot, SpinBlock &newEnvironment,
const SpinBlock &system, SpinBlock &systemDot, int leftState, int rightState,
const int &sys_add, const int &env_add, const bool &forward, const bool &direct,
const bool &onedot, const bool &nexact, const bool &useSlater, int integralIndex,
bool haveNormops, bool haveCompops, const bool& dot_with_sys, int constraint, const std::vector<SpinQuantum>& braquanta, const std::vector<SpinQuantum>& ketquanta) {
// now initialise environment Dot
int systemDotStart, systemDotEnd, environmentDotStart, environmentDotEnd, environmentStart, environmentEnd;
int systemDotSize = sys_add - 1;
int environmentDotSize = env_add - 1;
if (forward) {
systemDotStart = dmrginp.spinAdapted() ? *system.get_sites().rbegin () + 1 : (*system.get_sites().rbegin ())/2 + 1 ;
systemDotEnd = systemDotStart + systemDotSize;
environmentDotStart = systemDotEnd + 1;
environmentDotEnd = environmentDotStart + environmentDotSize;
environmentStart = environmentDotEnd + 1;
environmentEnd = dmrginp.spinAdapted() ? dmrginp.last_site() - 1 : dmrginp.last_site()/2 - 1;
} else {
systemDotStart = dmrginp.spinAdapted() ? system.get_sites()[0] - 1 : (system.get_sites()[0])/2 - 1 ;
systemDotEnd = systemDotStart - systemDotSize;
environmentDotStart = systemDotEnd - 1;
environmentDotEnd = environmentDotStart - environmentDotSize;
environmentStart = environmentDotEnd - 1;
environmentEnd = 0;
}
std::vector<int> environmentSites;
environmentSites.resize(abs(environmentEnd - environmentStart) + 1);
for (int i = 0; i < abs(environmentEnd - environmentStart) + 1; ++i) *(environmentSites.begin () + i) = min(environmentStart,environmentEnd) + i;
// now initialise environment
if (useSlater) { // for FCI
StateInfo system_stateinfo = system.get_stateInfo();
StateInfo sysdot_stateinfo = systemDot.get_stateInfo();
StateInfo tmp;
TensorProduct (system_stateinfo, sysdot_stateinfo, tmp, NO_PARTICLE_SPIN_NUMBER_CONSTRAINT);
// tmp has the system+dot quantum numbers
tmp.CollectQuanta ();
// exact environment
if (dmrginp.do_fci() || environmentSites.size() == nexact) {
if ((!dot_with_sys && onedot) || !onedot) { // environment has dot
environment.set_integralIndex() = integralIndex;
environment.default_op_components(!forward, leftState==rightState);
environment.setstoragetype(DISTRIBUTED_STORAGE);
environment.BuildTensorProductBlock(environmentSites); // exact block
SpinBlock::store (true, environmentSites, environment, leftState, rightState);
}
else { // environment has no dot, so newEnv = Env
newEnvironment.set_integralIndex() = integralIndex;
newEnvironment.default_op_components(!forward, leftState==rightState);
newEnvironment.setstoragetype(DISTRIBUTED_STORAGE);
newEnvironment.BuildTensorProductBlock(environmentSites);
SpinBlock::store (true, environmentSites, newEnvironment, leftState, rightState);
}
} else if (dmrginp.warmup() == LOCAL2 || dmrginp.warmup() == LOCAL3 || dmrginp.warmup() == LOCAL4) {
int nactiveSites, ncoreSites;
if (dmrginp.warmup() == LOCAL2) {
nactiveSites = 1;
} else if (dmrginp.warmup() == LOCAL3) {
nactiveSites = 2;
} else if (dmrginp.warmup() == LOCAL4) {
nactiveSites = 3;
}
if (dot_with_sys && onedot) {
nactiveSites += 1;
}
if (nactiveSites > environmentSites.size()) {
nactiveSites = environmentSites.size();
}
ncoreSites = environmentSites.size() - nactiveSites;
// figure out what sites are in the active and core sites
int environmentActiveEnd = forward ? environmentStart + nactiveSites - 1 : environmentStart - nactiveSites + 1;
int environmentCoreStart = forward ? environmentActiveEnd + 1 : environmentActiveEnd - 1;
std::vector<int> activeSites(nactiveSites), coreSites(ncoreSites);
for (int i = 0; i < nactiveSites; ++i) {
activeSites[i] = min(environmentStart,environmentActiveEnd) + i;
}
for (int i = 0; i < ncoreSites; ++i) {
coreSites[i] = min(environmentCoreStart,environmentEnd) + i;
}
SpinBlock environmentActive, environmentCore;
environmentActive.nonactive_orb() = system.nonactive_orb();
environmentCore.nonactive_orb() = system.nonactive_orb();
if (coreSites.size() > 0) {
environmentActive.set_integralIndex() = integralIndex;
environmentCore.set_integralIndex() = integralIndex;
environmentActive.default_op_components(!forward, leftState==rightState);
environmentActive.setstoragetype(DISTRIBUTED_STORAGE);
environmentCore.default_op_components(!forward, leftState==rightState);
environmentCore.setstoragetype(DISTRIBUTED_STORAGE);
environmentActive.BuildTensorProductBlock(activeSites);
environmentCore.BuildSingleSlaterBlock(coreSites);
dmrginp.datatransfer -> start();
//.........这里部分代码省略.........
示例4: BlockAndDecimate
void SweepOnepdm::BlockAndDecimate (SweepParams &sweepParams, SpinBlock& system, SpinBlock& newSystem, const bool &useSlater, const bool& dot_with_sys, int state)
{
//mcheck("at the start of block and decimate");
// figure out if we are going forward or backwards
dmrginp.guessgenT -> start();
bool forward = (system.get_sites() [0] == 0);
SpinBlock systemDot;
SpinBlock envDot;
int systemDotStart, systemDotEnd;
int systemDotSize = sweepParams.get_sys_add() - 1;
if (forward)
{
systemDotStart = dmrginp.spinAdapted() ? *system.get_sites().rbegin () + 1 : (*system.get_sites().rbegin ())/2 + 1 ;
systemDotEnd = systemDotStart + systemDotSize;
}
else
{
systemDotStart = dmrginp.spinAdapted() ? system.get_sites()[0] - 1 : (system.get_sites()[0])/2 - 1 ;
systemDotEnd = systemDotStart - systemDotSize;
}
vector<int> spindotsites(2);
spindotsites[0] = systemDotStart;
spindotsites[1] = systemDotEnd;
systemDot = SpinBlock(systemDotStart, systemDotEnd, system.get_integralIndex(), true);
SpinBlock environment, environmentDot, newEnvironment;
int environmentDotStart, environmentDotEnd, environmentStart, environmentEnd;
const int nexact = forward ? sweepParams.get_forward_starting_size() : sweepParams.get_backward_starting_size();
newSystem.set_integralIndex() = system.get_integralIndex();
newSystem.default_op_components(dmrginp.direct(), system, systemDot, false, false, true);
newSystem.erase(CRE_CRE_DESCOMP);
newSystem.erase(CRE_CRE);
newSystem.erase(HAM);
newSystem.setstoragetype(DISTRIBUTED_STORAGE_FOR_ONEPDM);
newSystem.BuildSumBlock (NO_PARTICLE_SPIN_NUMBER_CONSTRAINT, system, systemDot);
if (dmrginp.outputlevel() > 0) {
pout << "\t\t\t NewSystem block " << endl << newSystem << endl;
newSystem.printOperatorSummary();
}
InitBlocks::InitNewEnvironmentBlock(environment, systemDot, newEnvironment, system, systemDot, sweepParams.current_root(), sweepParams.current_root(),
sweepParams.get_sys_add(), sweepParams.get_env_add(), forward, dmrginp.direct(),
sweepParams.get_onedot(), nexact, useSlater, system.get_integralIndex(), false, false, true);
SpinBlock big;
newSystem.set_loopblock(true);
system.set_loopblock(false);
newEnvironment.set_loopblock(false);
InitBlocks::InitBigBlock(newSystem, newEnvironment, big);
const int nroots = dmrginp.nroots();
std::vector<Wavefunction> solution(1);
DiagonalMatrix e;
GuessWave::guess_wavefunctions(solution[0], e, big, sweepParams.get_guesstype(), true, state, true, 0.0);
#ifndef SERIAL
mpi::communicator world;
mpi::broadcast(world, solution, 0);
#endif
std::vector<Matrix> rotateMatrix;
DensityMatrix tracedMatrix(newSystem.get_stateInfo());
tracedMatrix.allocate(newSystem.get_stateInfo());
tracedMatrix.makedensitymatrix(solution, big, std::vector<double>(1,1.0), 0.0, 0.0, false);
rotateMatrix.clear();
if (!mpigetrank())
double error = makeRotateMatrix(tracedMatrix, rotateMatrix, sweepParams.get_keep_states(), sweepParams.get_keep_qstates());
#ifndef SERIAL
mpi::broadcast(world,rotateMatrix,0);
#endif
#ifdef SERIAL
const int numprocs = 1;
#endif
#ifndef SERIAL
const int numprocs = world.size();
#endif
Matrix onepdm;
load_onepdm_binary(onepdm, state ,state);
Matrix pairmat;
if (dmrginp.hamiltonian() == BCS)
load_pairmat_binary(pairmat, state ,state);
if (sweepParams.get_block_iter() == 0) {
//this is inface a combination of 2_0_0, 1_1_0 and 0_2_0
p2out << "\t\t\t compute 2_0_0"<<endl;
compute_one_pdm_2_0_0(solution[0], solution[0], big, onepdm);
if (dmrginp.hamiltonian() == BCS)
compute_pair_2_0_0(solution[0], solution[0], big, pairmat);
p2out << "\t\t\t compute 1_1_0"<<endl;
compute_one_pdm_1_1_0(solution[0], solution[0], big, onepdm);
if (dmrginp.hamiltonian() == BCS)
compute_pair_1_1_0(solution[0], solution[0], big, pairmat);
}
//.........这里部分代码省略.........