本文整理汇总了C++中SequenceTree::write_with_bootstrap_fraction方法的典型用法代码示例。如果您正苦于以下问题:C++ SequenceTree::write_with_bootstrap_fraction方法的具体用法?C++ SequenceTree::write_with_bootstrap_fraction怎么用?C++ SequenceTree::write_with_bootstrap_fraction使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SequenceTree
的用法示例。
在下文中一共展示了SequenceTree::write_with_bootstrap_fraction方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main(int argc,char* argv[])
{
try {
//----------- Parse command line ----------//
variables_map args = parse_cmd_line(argc,argv);
int skip = args["skip"].as<int>();
int max = -1;
if (args.count("max"))
max = args["max"].as<int>();
int subsample = args["sub-sample"].as<int>();
vector<string> prune;
if (args.count("prune")) {
string p = args["prune"].as<string>();
prune = split(p,',');
}
//----------- Read the topology -----------//
SequenceTree Q = load_T(args);
standardize(Q);
const int B = Q.n_branches();
const int N = Q.n_nodes();
vector<double> bf(B);
for(int b=0;b<bf.size();b++)
bf[b] = Q.branch(b).length();
//-------- Read in the tree samples --------//
if ( args.count("simple") ) {
accum_branch_lengths_ignore_topology A(Q);
scan_trees(std::cin,skip,subsample,max,prune,A);
for(int b=0;b<B;b++)
Q.branch(b).set_length(A.m1[b]);
cout<<Q.write_with_bootstrap_fraction(bf,true)<<endl;
exit(0);
}
accum_branch_lengths_same_topology A(Q);
try {
scan_trees(std::cin,skip,subsample,max,prune,A);
}
catch (std::exception& e)
{
if (args.count("safe"))
cout<<Q.write(false)<<endl;
std::cerr<<"tree-mean-lengths: Error! "<<e.what()<<endl;
exit(0);
}
if (log_verbose) std::cerr<<A.n_matches<<" out of "<<A.n_samples<<" trees matched the topology";
if (log_verbose) std::cerr<<" ("<<double(A.n_matches)/A.n_samples*100<<"%)"<<std::endl;
//------- Merge lengths and topology -------//
if (args.count("var")) {
for(int b=0;b<B;b++)
Q.branch(b).set_length(A.m2[b]);
cout<<Q;
exit(0);
}
else {
for(int b=0;b<B;b++)
Q.branch(b).set_length(A.m1[b]);
if (not args.count("no-node-lengths") and
not args.count("show-node-lengths")) {
for(int n=0;n<N;n++) {
int degree = Q[n].neighbors().size();
for(out_edges_iterator b = Q[n].branches_out();b;b++)
(*b).set_length((*b).length() + A.n1[n]/degree);
}
}
//------- Print Tree and branch lengths -------//
cout<<Q.write_with_bootstrap_fraction(bf,true)<<endl;
//------------ Print node lengths -------------//
if (args.count("show-node-lengths"))
for(int n=0;n<Q.n_nodes();n++) {
if (A.n1[n] > 0) {
cout<<"node "<<A.n1[n]<<endl;
int b = (*Q[n].branches_in()).name();
cout<<partition_from_branch(Q,b)<<endl;
}
}
}
}
catch (std::exception& e) {
std::cerr<<"tree-mean-lengths: Error! "<<e.what()<<endl;
exit(1);
}
return 0;
}