本文整理汇总了C++中SequenceTree::branch方法的典型用法代码示例。如果您正苦于以下问题:C++ SequenceTree::branch方法的具体用法?C++ SequenceTree::branch怎么用?C++ SequenceTree::branch使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SequenceTree
的用法示例。
在下文中一共展示了SequenceTree::branch方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: update_lengths
bool update_lengths(const SequenceTree& Q,const SequenceTree& T,
valarray<double>& branch_lengths,
valarray<double>& branch_lengths_squared,
valarray<double>& node_lengths)
{
// map branches from Q -> T
vector<int> branches_map = extends_map(T,Q);
if (not branches_map.size())
return false;
// incorporate lengths of branches that map to Q
for(int b=0;b<Q.n_branches();b++)
{
int b2 = branches_map[b];
double L = T.directed_branch(b2).length();
branch_lengths[b] += L;
branch_lengths_squared[b] += L*L;
}
// map nodes from T -> Q
vector<int> nodes_map = get_nodes_map(Q,T,branches_map);
// incorprate lengths of branches that map to nodes in Q
for(int i=T.n_leafbranches();i<T.n_branches();i++)
{
const_branchview b = T.branch(i);
int n1 = nodes_map[b.source()];
int n2 = nodes_map[b.target()];
if (n1 == n2)
node_lengths[n1] += T.branch(i).length();
}
return true;
}
示例2: estimate_tree
void estimate_tree(const alignment& A,
SequenceTree& T,
substitution::MultiModel& smodel,
const vector<int>& parameters)
{
//------- Estimate branch lengths -------------//
log_branch_likelihood score2(A,smodel,T,parameters);
// Initialize starting point
optimize::Vector start(0.1, T.n_branches() + parameters.size());
for(int b=0;b<T.n_branches();b++)
start[b] = log(T.branch(b).length());
for(int i=0;i<parameters.size();i++)
start[i+T.n_branches()] = smodel.get_parameter_value_as<Double>( parameters[i] );
// optimize::Vector end = search_gradient(start,score);
// optimize::Vector end = search_basis(start,score);
optimize::Vector end = search_gradient(start,score2,1e-3);
for(int b=0;b<T.n_branches();b++)
T.branch(b).set_length(exp(end[b]));
for(int i=0;i<parameters.size();i++)
smodel.set_parameter_value(parameters[i], end[i+T.n_branches()]);
smodel.set_rate(1);
}
示例3: choose_SPR_target
int choose_SPR_target(SequenceTree& T1, int b1_)
{
const_branchview b1 = T1.directed_branch(b1_);
//----- Select the branch to move to ------//
dynamic_bitset<> subtree_nodes = T1.partition(b1.reverse());
subtree_nodes[b1.target()] = true;
vector<int> branches;
vector<double> lengths;
for(int i=0; i<T1.n_branches(); i++)
{
const_branchview bi = T1.branch(i);
// skip branch if its contained in the subtree
if (subtree_nodes[bi.target()] and
subtree_nodes[bi.source()])
continue;
double L = 1.0;
// down-weight branch if it is one of the subtree's 2 neighbors
if (subtree_nodes[bi.target()] or
subtree_nodes[bi.source()])
L = 0.5;
branches.push_back(i);
lengths.push_back(L);
}
int b2 = branches[ choose(lengths) ];
return b2;
}
示例4: operator
void accum_branch_lengths_ignore_topology::operator()(const SequenceTree& T)
{
n_samples++;
for(int b1=0;b1<Q.n_branches();b1++)
{
// this is a complete waste of CPU time.
dynamic_bitset<> bp1 = branch_partition(Q,b1);
if (not bp1[0]) bp1.flip();
// search for Q.branch(b1) in tree T
int b2 = -1;
for(int i=0;i<T.n_branches();i++)
{
dynamic_bitset<> bp2 = branch_partition(T,i);
if (not bp2[0]) bp2.flip();
if (bp1 == bp2) {
b2 = i;
break;
}
}
if (b2 != -1) {
double L = T.branch(b2).length();
m1[b1] += L;
m2[b1] += L*L;
n_matches[b1]++;
}
}
}
示例5: get_mf_tree
SequenceTree get_mf_tree(const std::vector<std::string>& names,
const std::vector<dynamic_bitset<> >& partitions)
{
SequenceTree T = star_tree(names);
for(int i=0;i<partitions.size();i++)
T.induce_partition(partitions[i]);
for(int i=0;i<T.n_branches();i++)
T.branch(i).set_length(1.0);
return T;
}
示例6: prior_exponential
/// Tree prior: topology & branch lengths (exponential)
efloat_t prior_exponential(const SequenceTree& T,double branch_mean)
{
efloat_t p = 1;
// --------- uniform prior on topologies --------//
if (T.n_leaves()>3)
p /= num_topologies(T.n_leaves());
// ---- Exponential prior on branch lengths ---- //
for(int i=0;i<T.n_branches();i++)
p *= exponential_pdf(T.branch(i).length(), branch_mean);
return p;
}
示例7: prior_gamma
/// Tree prior: topology & branch lengths (gamma)
efloat_t prior_gamma(const SequenceTree& T,double branch_mean)
{
efloat_t p = 1;
// --------- uniform prior on topologies --------//
if (T.n_leaves()>3)
p /= num_topologies(T.n_leaves());
// ---- Exponential prior on branch lengths ---- //
double a = 0.5;
double b = branch_mean*2;
for(int i=0;i<T.n_branches();i++)
p *= gamma_pdf(T.branch(i).length(), a, b);
return p;
}
示例8: assert
// mark nodes in T according to what node of Q they map to
vector<int> get_nodes_map(const SequenceTree& Q,const SequenceTree& T,
const vector<int>& branches_map)
{
assert(branches_map.size() == Q.n_branches() * 2);
vector<int> nodes_map(T.n_nodes(),-1);
// map nodes from T -> Q that are in both trees
for(int b=0;b<Q.n_branches();b++)
{
int Q_source = Q.branch(b).source();
int Q_target = Q.branch(b).target();
int b2 = branches_map[b];
int T_source = T.directed_branch(b2).source();
int T_target = T.directed_branch(b2).target();
if (nodes_map[T_source] == -1)
nodes_map[T_source] = Q_source;
else
assert(nodes_map[T_source] == Q_source);
if (nodes_map[T_target] == -1)
nodes_map[T_target] = Q_target;
else
assert(nodes_map[T_target] == Q_target);
}
// map the rest of the nodes from T -> Q
for(int i=Q.n_leaves();i<Q.n_nodes();i++)
{
unsigned D = Q[i].degree();
if (D <= 3) continue;
// get a branch of Q pointing into the node
const_branchview outside = *(Q[i].branches_in());
// get a branch of T pointing into the node
outside = T.directed_branch(branches_map[outside.name()]);
list<const_branchview> branches;
typedef list<const_branchview>::iterator list_iterator;
append(outside.branches_after(),branches);
for(list_iterator b = branches.begin() ; b != branches.end();)
{
int node = (*b).target();
if (nodes_map[node] == -1)
nodes_map[node] = i;
if (nodes_map[node] == i) {
append((*b).branches_after(),branches);
b++;
}
else {
list_iterator prev = b;
b++;
branches.erase(prev);
}
}
assert(branches.size() == D-3);
}
for(int i=0;i<nodes_map.size();i++)
assert(nodes_map[i] != -1);
return nodes_map;
}
示例9: main
int main(int argc,char* argv[])
{
try {
//----------- Parse command line ----------//
variables_map args = parse_cmd_line(argc,argv);
int skip = args["skip"].as<int>();
int max = -1;
if (args.count("max"))
max = args["max"].as<int>();
int subsample = args["sub-sample"].as<int>();
vector<string> prune;
if (args.count("prune")) {
string p = args["prune"].as<string>();
prune = split(p,',');
}
//----------- Read the topology -----------//
SequenceTree Q = load_T(args);
standardize(Q);
const int B = Q.n_branches();
const int N = Q.n_nodes();
vector<double> bf(B);
for(int b=0;b<bf.size();b++)
bf[b] = Q.branch(b).length();
//-------- Read in the tree samples --------//
if ( args.count("simple") ) {
accum_branch_lengths_ignore_topology A(Q);
scan_trees(std::cin,skip,subsample,max,prune,A);
for(int b=0;b<B;b++)
Q.branch(b).set_length(A.m1[b]);
cout<<Q.write_with_bootstrap_fraction(bf,true)<<endl;
exit(0);
}
accum_branch_lengths_same_topology A(Q);
try {
scan_trees(std::cin,skip,subsample,max,prune,A);
}
catch (std::exception& e)
{
if (args.count("safe"))
cout<<Q.write(false)<<endl;
std::cerr<<"tree-mean-lengths: Error! "<<e.what()<<endl;
exit(0);
}
if (log_verbose) std::cerr<<A.n_matches<<" out of "<<A.n_samples<<" trees matched the topology";
if (log_verbose) std::cerr<<" ("<<double(A.n_matches)/A.n_samples*100<<"%)"<<std::endl;
//------- Merge lengths and topology -------//
if (args.count("var")) {
for(int b=0;b<B;b++)
Q.branch(b).set_length(A.m2[b]);
cout<<Q;
exit(0);
}
else {
for(int b=0;b<B;b++)
Q.branch(b).set_length(A.m1[b]);
if (not args.count("no-node-lengths") and
not args.count("show-node-lengths")) {
for(int n=0;n<N;n++) {
int degree = Q[n].neighbors().size();
for(out_edges_iterator b = Q[n].branches_out();b;b++)
(*b).set_length((*b).length() + A.n1[n]/degree);
}
}
//------- Print Tree and branch lengths -------//
cout<<Q.write_with_bootstrap_fraction(bf,true)<<endl;
//------------ Print node lengths -------------//
if (args.count("show-node-lengths"))
for(int n=0;n<Q.n_nodes();n++) {
if (A.n1[n] > 0) {
cout<<"node "<<A.n1[n]<<endl;
int b = (*Q[n].branches_in()).name();
cout<<partition_from_branch(Q,b)<<endl;
}
}
}
}
catch (std::exception& e) {
std::cerr<<"tree-mean-lengths: Error! "<<e.what()<<endl;
exit(1);
}
return 0;
}
示例10: delete_node
//FIXME T.seq(i) -> T.leafname(i)
//FIXME T.get_sequences -> T.leafnames()
void delete_node(SequenceTree& T,const std::string& name)
{
int index = find_index(T.get_sequences(),name);
nodeview n = T.prune_subtree(T.branch(index).reverse());
T.remove_node_from_branch(n);
}
示例11: print_stats
void print_stats(std::ostream& o,std::ostream& trees,
const Parameters& P,
bool print_alignment)
{
efloat_t Pr_prior = P.prior();
efloat_t Pr_likelihood = P.likelihood();
efloat_t Pr = Pr_prior * Pr_likelihood;
o<<" prior = "<<Pr_prior;
for(int i=0;i<P.n_data_partitions();i++)
o<<" prior_A"<<i+1<<" = "<<P[i].prior_alignment();
o<<" likelihood = "<<Pr_likelihood<<" logp = "<<Pr
<<" beta = " <<P.beta[0] <<"\n";
if (print_alignment)
for(int i=0;i<P.n_data_partitions();i++)
o<<standardize(*P[i].A, *P.T)<<"\n";
{
SequenceTree T = *P.T;
valarray<double> weights(P.n_data_partitions());
for(int i=0;i<weights.size();i++)
weights[i] = max(sequence_lengths(*P[i].A, P.T->n_leaves()));
weights /= weights.sum();
double mu_scale=0;
for(int i=0;i<P.n_data_partitions();i++)
mu_scale += P[i].branch_mean()*weights[i];
for(int b=0;b<T.n_branches();b++)
T.branch(b).set_length(mu_scale*T.branch(b).length());
trees<<T<<std::endl;
trees.flush();
}
o<<"\n";
show_parameters(o,P);
o.flush();
for(int m=0;m<P.n_smodels();m++) {
o<<"smodel"<<m+1<<endl;
for(int i=0;i<P.SModel(m).n_base_models();i++)
o<<" rate"<<i<<" = "<<P.SModel(m).base_model(i).rate();
o<<"\n\n";
for(int i=0;i<P.SModel(m).n_base_models();i++)
o<<" fraction"<<i<<" = "<<P.SModel(m).distribution()[i];
o<<"\n\n";
o<<"frequencies = "<<"\n";
show_frequencies(o,P.SModel(m));
o<<"\n\n";
o.flush();
}
// The leaf sequences should NOT change during alignment
#ifndef NDEBUG
for(int i=0;i<P.n_data_partitions();i++)
check_alignment(*P[i].A, *P.T,"print_stats:end");
#endif
}
示例12: update_lengths
bool update_lengths(const MC_tree& Q,const SequenceTree& T,
const vector<dynamic_bitset<> >& node_masks,
const vector<Partition>& partitions2,
valarray<double>& branch_lengths,
valarray<double>& node_lengths)
{
// check that this tree is consistent with the MC Tree Q
for(int i=0;i<Q.branch_order.size();i++)
{
int b = Q.branch_order[i];
if (not implies(T,Q.partitions[b]))
return false;
}
// map branches of the input tree
for(int b=0;b<T.n_branches();b++)
{
Partition P = partition_from_branch(T,b);
// Find mc tree branches implied by branch b
vector<int> branches;
for(int i=0;i<Q.branch_order.size();i++)
{
if (implies(P,partitions2[i]))
branches.push_back(i);
}
// Find out which nodes this branch is inside of
vector<int> nodes;
for(int n=0;n<Q.n_nodes();n++)
{
if (Q.degree(n) == 0) continue;
Partition P2 = P;
P2.group1 = P2.group1 & node_masks[n];
P2.group2 = P2.group2 & node_masks[n];
if (P2.group1.none() or P2.group2.none())
continue;
bool ok = true;
for(int b=0;b<2*Q.n_branches() and ok;b++)
{
if (Q.mapping[b] != n) continue;
Partition P3 = Q.partitions[b];
P3.group1 = P3.group1 & node_masks[n];
P3.group2 = P3.group2 & node_masks[n];
if (partition_less_than(P3,P2) or partition_less_than(P3,P2.reverse()))
;
else
ok=false;
}
if (ok) {
nodes.push_back(n);
assert(Q.degree(n) > 3);
}
}
/*
cerr<<"Branch: "<<P<<endl;
cerr<<" - maps to "<<branches.size()<<" branches."<<endl;
if (nodes.size()) {
cerr<<" - inside node(s):"<<endl;
cerr<<P<<endl;
for(int i=0;i<nodes.size();i++)
cerr<<" "<<Q.partitions[Q.branch_to_node(nodes[i])]<<endl;
}
*/
// This branch should be inside only one node, if any.
assert(nodes.size() < 2);
// This branch should not be inside a node, if it implies an mc tree branch.
if (branches.size()) assert(not nodes.size());
// But this branch should be inside a node if it doesn't imply a branch.
assert(branches.size() + nodes.size() > 0);
const double L = T.branch(b).length();
// Divide the branch length evenly between the branches it implies.
for(int i=0;i<branches.size();i++)
branch_lengths[branches[i]] += L/branches.size();
// Divide the branch length evenly between the nodes (node?) it implies.
for(int i=0;i<nodes.size();i++)
node_lengths[nodes[i]] += L/nodes.size();
}
return true;
}
示例13: main
//.........这里部分代码省略.........
{
if (not informative(good_partitions[i].first))
continue;
unsigned n = good_partitions[i].second;
double PP = double(n)/N;
double o = odds(n,N,1);
cout<<" PP = "<<PP<<" LOD = "<<log10(o);
if (not good_partitions[i].first.full()) {
double ratio = odds_ratio(good_partitions,i,N,1);
cout<<" ratio = "<<log10(ratio);
}
cout<<" pi = "<<good_partitions[i].first<<endl;
cout<<endl<<endl;
}
//----------- display M[l] consensus levels ----------//
std::cout.precision(4);
cout<<"\n\nConsensus levels:\n\n";
vector<Partition> c50_sub_partitions = get_Ml_partitions(all_partitions, 0.5, N);
vector<Partition> c50_full_partitions = select(c50_sub_partitions,&Partition::full);
c50_sub_partitions = get_moveable_tree(c50_sub_partitions);
vector<unsigned> levels = get_Ml_levels(all_partitions,N,min_support);
levels.push_back(N+1);
for(int j=0,k=0;j<levels.size() and k < consensus_levels.size();j++)
{
unsigned clevel = (unsigned)(consensus_levels[k]*N);
while (k<consensus_levels.size() and clevel < levels[j])
{
clevel = (unsigned)(consensus_levels[k]*N);
vector<Partition> all = get_Ml_partitions(all_partitions,consensus_levels[k],N);
vector<Partition> sub;
vector<Partition> full;
for(int i=0;i<all.size();i++)
if (all[i].full())
full.push_back(all[i]);
else
sub.push_back(all[i]);
SequenceTree consensus = get_mf_tree(tree_dist.names(),full);
SequenceTree consensus2 = consensus;
double L = consensus_levels[k]*100;
cout.unsetf(ios::fixed | ios::showpoint);
vector<double> bf(consensus.n_branches(),1.0);
for(int i=0;i<bf.size();i++)
{
if (consensus.branch(i).is_leaf_branch())
bf[i] = -1.0;
else {
dynamic_bitset<> mask = branch_partition(consensus,i);
Partition p(tree_dist.names(),mask);
unsigned count = get_partition_count(all_partitions,p);
bf[i] = double(count)/N;
}
consensus2.branch(i).set_length(bf[i]);
}
cout<<" "<<L<<"-consensus-PP = "<<consensus2.write(true)<<std::endl;
//cout<<" "<<L<<"-consensus-PP2 = "<<consensus.write_with_bootstrap_fraction(bf,false)<<std::endl;
cout<<" "<<L<<"-consensus = "<<consensus.write(false)<<std::endl;
if (show_sub) {
for(int i=0;i<sub.size();i++)
cout<<sub[i]<<endl;
}
cout<<endl<<endl;
k++;
}
if (levels[j] <=N) {
show_level(tree_dist,levels[j],c50_sub_partitions,all_partitions,show_sub,false);
cout<<endl;
}
}
}
catch (std::exception& e) {
std::cerr<<"trees-consensus: Error! "<<e.what()<<endl;
exit(1);
}
return 0;
}