当前位置: 首页>>代码示例>>C++>>正文


C++ SX::sparsity方法代码示例

本文整理汇总了C++中SX::sparsity方法的典型用法代码示例。如果您正苦于以下问题:C++ SX::sparsity方法的具体用法?C++ SX::sparsity怎么用?C++ SX::sparsity使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SX的用法示例。


在下文中一共展示了SX::sparsity方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: init

  void SymbolicQr::init() {
    // Call the base class initializer
    LinearSolverInternal::init();

    // Read options
    bool codegen = getOption("codegen");
    string compiler = getOption("compiler");

    // Make sure that command processor is available
    if (codegen) {
#ifdef WITH_DL
      int flag = system(static_cast<const char*>(0));
      casadi_assert_message(flag!=0, "No command procesor available");
#else // WITH_DL
      casadi_error("Codegen requires CasADi to be compiled with option \"WITH_DL\" enabled");
#endif // WITH_DL
    }

    // Symbolic expression for A
    SX A = SX::sym("A", input(0).sparsity());

    // Get the inverted column permutation
    std::vector<int> inv_colperm(colperm_.size());
    for (int k=0; k<colperm_.size(); ++k)
      inv_colperm[colperm_[k]] = k;

    // Get the inverted row permutation
    std::vector<int> inv_rowperm(rowperm_.size());
    for (int k=0; k<rowperm_.size(); ++k)
      inv_rowperm[rowperm_[k]] = k;

    // Permute the linear system
    SX Aperm = A(rowperm_, colperm_);

    // Generate the QR factorization function
    vector<SX> QR(2);
    qr(Aperm, QR[0], QR[1]);
    SXFunction fact_fcn(A, QR);

    // Optionally generate c code and load as DLL
    if (codegen) {
      stringstream ss;
      ss << "symbolic_qr_fact_fcn_" << this;
      fact_fcn_ = dynamicCompilation(fact_fcn, ss.str(),
                                     "Symbolic QR factorization function", compiler);
    } else {
      fact_fcn_ = fact_fcn;
    }

    // Initialize factorization function
    fact_fcn_.setOption("name", "QR_fact");
    fact_fcn_.init();

    // Symbolic expressions for solve function
    SX Q = SX::sym("Q", QR[0].sparsity());
    SX R = SX::sym("R", QR[1].sparsity());
    SX b = SX::sym("b", input(1).size1(), 1);

    // Solve non-transposed
    // We have Pb' * Q * R * Px * x = b <=> x = Px' * inv(R) * Q' * Pb * b

    // Permute the right hand sides
    SX bperm = b(rowperm_, ALL);

    // Solve the factorized system
    SX xperm = casadi::solve(R, mul(Q.T(), bperm));

    // Permute back the solution
    SX x = xperm(inv_colperm, ALL);

    // Generate the QR solve function
    vector<SX> solv_in(3);
    solv_in[0] = Q;
    solv_in[1] = R;
    solv_in[2] = b;
    SXFunction solv_fcn(solv_in, x);

    // Optionally generate c code and load as DLL
    if (codegen) {
      stringstream ss;
      ss << "symbolic_qr_solv_fcn_N_" << this;
      solv_fcn_N_ = dynamicCompilation(solv_fcn, ss.str(), "QR_solv_N", compiler);
    } else {
      solv_fcn_N_ = solv_fcn;
    }

    // Initialize solve function
    solv_fcn_N_.setOption("name", "QR_solv");
    solv_fcn_N_.init();

    // Solve transposed
    // We have (Pb' * Q * R * Px)' * x = b
    // <=> Px' * R' * Q' * Pb * x = b
    // <=> x = Pb' * Q * inv(R') * Px * b

    // Permute the right hand side
    bperm = b(colperm_, ALL);

    // Solve the factorized system
    xperm = mul(Q, casadi::solve(R.T(), bperm));
//.........这里部分代码省略.........
开发者ID:ghorn,项目名称:debian-casadi,代码行数:101,代码来源:symbolic_qr.cpp

示例2: value

 DM value(const SX& x, const std::vector<MX>& values=std::vector<MX>()) const {
   return DM::nan(x.sparsity());
 }
开发者ID:casadi,项目名称:casadi,代码行数:3,代码来源:optistack_internal.hpp

示例3: init

  void Sqpmethod::init() {
    // Call the init method of the base class
    NlpSolverInternal::init();

    // Read options
    max_iter_ = getOption("max_iter");
    max_iter_ls_ = getOption("max_iter_ls");
    c1_ = getOption("c1");
    beta_ = getOption("beta");
    merit_memsize_ = getOption("merit_memory");
    lbfgs_memory_ = getOption("lbfgs_memory");
    tol_pr_ = getOption("tol_pr");
    tol_du_ = getOption("tol_du");
    regularize_ = getOption("regularize");
    exact_hessian_ = getOption("hessian_approximation")=="exact";
    min_step_size_ = getOption("min_step_size");

    // Get/generate required functions
    gradF();
    jacG();
    if (exact_hessian_) {
      hessLag();
    }

    // Allocate a QP solver
    Sparsity H_sparsity = exact_hessian_ ? hessLag().output().sparsity()
        : Sparsity::dense(nx_, nx_);
    H_sparsity = H_sparsity + Sparsity::diag(nx_);
    Sparsity A_sparsity = jacG().isNull() ? Sparsity(0, nx_)
        : jacG().output().sparsity();

    // QP solver options
    Dict qp_solver_options;
    if (hasSetOption("qp_solver_options")) {
      qp_solver_options = getOption("qp_solver_options");
    }

    // Allocate a QP solver
    qp_solver_ = QpSolver("qp_solver", getOption("qp_solver"),
                          make_map("h", H_sparsity, "a", A_sparsity),
                          qp_solver_options);

    // Lagrange multipliers of the NLP
    mu_.resize(ng_);
    mu_x_.resize(nx_);

    // Lagrange gradient in the next iterate
    gLag_.resize(nx_);
    gLag_old_.resize(nx_);

    // Current linearization point
    x_.resize(nx_);
    x_cand_.resize(nx_);
    x_old_.resize(nx_);

    // Constraint function value
    gk_.resize(ng_);
    gk_cand_.resize(ng_);

    // Hessian approximation
    Bk_ = DMatrix::zeros(H_sparsity);

    // Jacobian
    Jk_ = DMatrix::zeros(A_sparsity);

    // Bounds of the QP
    qp_LBA_.resize(ng_);
    qp_UBA_.resize(ng_);
    qp_LBX_.resize(nx_);
    qp_UBX_.resize(nx_);

    // QP solution
    dx_.resize(nx_);
    qp_DUAL_X_.resize(nx_);
    qp_DUAL_A_.resize(ng_);

    // Gradient of the objective
    gf_.resize(nx_);

    // Create Hessian update function
    if (!exact_hessian_) {
      // Create expressions corresponding to Bk, x, x_old, gLag and gLag_old
      SX Bk = SX::sym("Bk", H_sparsity);
      SX x = SX::sym("x", input(NLP_SOLVER_X0).sparsity());
      SX x_old = SX::sym("x", x.sparsity());
      SX gLag = SX::sym("gLag", x.sparsity());
      SX gLag_old = SX::sym("gLag_old", x.sparsity());

      SX sk = x - x_old;
      SX yk = gLag - gLag_old;
      SX qk = mul(Bk, sk);

      // Calculating theta
      SX skBksk = inner_prod(sk, qk);
      SX omega = if_else(inner_prod(yk, sk) < 0.2 * inner_prod(sk, qk),
                               0.8 * skBksk / (skBksk - inner_prod(sk, yk)),
                               1);
      yk = omega * yk + (1 - omega) * qk;
      SX theta = 1. / inner_prod(sk, yk);
      SX phi = 1. / inner_prod(qk, sk);
//.........这里部分代码省略.........
开发者ID:BrechtBa,项目名称:casadi,代码行数:101,代码来源:sqpmethod.cpp

示例4: init


//.........这里部分代码省略.........
  SX f2_z = ex[1];
  SX f_z = ex[2];
  
  // Modified function Z
  enum ZIn{Z_U,Z_D,Z_LAM_X,Z_LAM_F2,Z_NUM_IN};
  SXVector zfcn_in(Z_NUM_IN);
  zfcn_in[Z_U] = u;
  zfcn_in[Z_D] = d;
  zfcn_in[Z_LAM_X] = lam_x;
  zfcn_in[Z_LAM_F2] = lam_f2;
  
  enum ZOut{Z_D_DEF,Z_F12,Z_NUM_OUT};
  SXVector zfcn_out(Z_NUM_OUT);
  zfcn_out[Z_D_DEF] = d_def;
  zfcn_out[Z_F12] = vertcat(f1_z,f2_z);
  
  SXFunction zfcn(zfcn_in,zfcn_out);
  zfcn.init();
  if(verbose_){
    cout << "Generated reconstruction function ( " << zfcn.getAlgorithmSize() << " nodes)." << endl;
  }

  // Matrix A and B in lifted Newton
  SX B = zfcn.jac(Z_U,Z_F12);
  SX B1 = B(Slice(0,nf1),Slice(0,B.size2()));
  SX B2 = B(Slice(nf1,B.size1()),Slice(0,B.size2()));
  if(verbose_){
    cout << "Formed B1 (dimension " << B1.size1() << "-by-" << B1.size2() << ", "<< B1.size() << " nonzeros) " <<
    "and B2 (dimension " << B2.size1() << "-by-" << B2.size2() << ", "<< B2.size() << " nonzeros)." << endl;
  }
  
  // Step in u
  SX du = ssym("du",nu);
  SX dlam_f2 = ssym("dlam_f2",lam_f2.sparsity());
  
  SX b1 = f1_z;
  SX b2 = f2_z;
  SX e;
  if(nv > 0){
    
    // Directional derivative of Z
    vector<vector<SX> > Z_fwdSeed(2,zfcn_in);
    vector<vector<SX> > Z_fwdSens(2,zfcn_out);
    vector<vector<SX> > Z_adjSeed;
    vector<vector<SX> > Z_adjSens;
    
    Z_fwdSeed[0][Z_U].setZero();
    Z_fwdSeed[0][Z_D] = -d;
    Z_fwdSeed[0][Z_LAM_X].setZero();
    Z_fwdSeed[0][Z_LAM_F2].setZero();
    
    Z_fwdSeed[1][Z_U] = du;
    Z_fwdSeed[1][Z_D] = -d;
    Z_fwdSeed[1][Z_LAM_X].setZero();
    Z_fwdSeed[1][Z_LAM_F2] = dlam_f2;
    
    zfcn.eval(zfcn_in,zfcn_out,Z_fwdSeed,Z_fwdSens,Z_adjSeed,Z_adjSens);
    
    b1 += Z_fwdSens[0][Z_F12](Slice(0,nf1));
    b2 += Z_fwdSens[0][Z_F12](Slice(nf1,B.size1()));
    e = Z_fwdSens[1][Z_D_DEF];
  }
  if(verbose_){
    cout << "Formed b1 (dimension " << b1.size1() << "-by-" << b1.size2() << ", "<< b1.size() << " nonzeros) " <<
    "and b2 (dimension " << b2.size1() << "-by-" << b2.size2() << ", "<< b2.size() << " nonzeros)." << endl;
  }
开发者ID:BrechtBa,项目名称:casadi,代码行数:67,代码来源:lifted_sqp_internal.cpp


注:本文中的SX::sparsity方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。