当前位置: 首页>>代码示例>>C++>>正文


C++ SX::T方法代码示例

本文整理汇总了C++中SX::T方法的典型用法代码示例。如果您正苦于以下问题:C++ SX::T方法的具体用法?C++ SX::T怎么用?C++ SX::T使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SX的用法示例。


在下文中一共展示了SX::T方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: init

  void QpToNlp::init(const Dict& opts) {
    // Initialize the base classes
    Qpsol::init(opts);

    // Default options
    string nlpsol_plugin;
    Dict nlpsol_options;

    // Read user options
    for (auto&& op : opts) {
      if (op.first=="nlpsol") {
        nlpsol_plugin = op.second.to_string();
      } else if (op.first=="nlpsol_options") {
        nlpsol_options = op.second;
      }
    }

    // Create a symbolic matrix for the decision variables
    SX X = SX::sym("X", n_, 1);

    // Parameters to the problem
    SX H = SX::sym("H", sparsity_in(QPSOL_H));
    SX G = SX::sym("G", sparsity_in(QPSOL_G));
    SX A = SX::sym("A", sparsity_in(QPSOL_A));

    // Put parameters in a vector
    std::vector<SX> par;
    par.push_back(H.nonzeros());
    par.push_back(G.nonzeros());
    par.push_back(A.nonzeros());

    // The nlp looks exactly like a mathematical description of the NLP
    SXDict nlp = {{"x", X}, {"p", vertcat(par)},
                  {"f", mtimes(G.T(), X) + 0.5*mtimes(mtimes(X.T(), H), X)},
                  {"g", mtimes(A, X)}};

    // Create an Nlpsol instance
    casadi_assert_message(!nlpsol_plugin.empty(), "'nlpsol' option has not been set");
    solver_ = nlpsol("nlpsol", nlpsol_plugin, nlp, nlpsol_options);
    alloc(solver_);

    // Allocate storage for NLP solver  parameters
    alloc_w(solver_.nnz_in(NLPSOL_P), true);
  }
开发者ID:RobotXiaoFeng,项目名称:casadi,代码行数:44,代码来源:qp_to_nlp.cpp

示例2: init

  void SymbolicQr::init() {
    // Call the base class initializer
    LinearSolverInternal::init();

    // Read options
    bool codegen = getOption("codegen");
    string compiler = getOption("compiler");

    // Make sure that command processor is available
    if (codegen) {
#ifdef WITH_DL
      int flag = system(static_cast<const char*>(0));
      casadi_assert_message(flag!=0, "No command procesor available");
#else // WITH_DL
      casadi_error("Codegen requires CasADi to be compiled with option \"WITH_DL\" enabled");
#endif // WITH_DL
    }

    // Symbolic expression for A
    SX A = SX::sym("A", input(0).sparsity());

    // Get the inverted column permutation
    std::vector<int> inv_colperm(colperm_.size());
    for (int k=0; k<colperm_.size(); ++k)
      inv_colperm[colperm_[k]] = k;

    // Get the inverted row permutation
    std::vector<int> inv_rowperm(rowperm_.size());
    for (int k=0; k<rowperm_.size(); ++k)
      inv_rowperm[rowperm_[k]] = k;

    // Permute the linear system
    SX Aperm = A(rowperm_, colperm_);

    // Generate the QR factorization function
    vector<SX> QR(2);
    qr(Aperm, QR[0], QR[1]);
    SXFunction fact_fcn(A, QR);

    // Optionally generate c code and load as DLL
    if (codegen) {
      stringstream ss;
      ss << "symbolic_qr_fact_fcn_" << this;
      fact_fcn_ = dynamicCompilation(fact_fcn, ss.str(),
                                     "Symbolic QR factorization function", compiler);
    } else {
      fact_fcn_ = fact_fcn;
    }

    // Initialize factorization function
    fact_fcn_.setOption("name", "QR_fact");
    fact_fcn_.init();

    // Symbolic expressions for solve function
    SX Q = SX::sym("Q", QR[0].sparsity());
    SX R = SX::sym("R", QR[1].sparsity());
    SX b = SX::sym("b", input(1).size1(), 1);

    // Solve non-transposed
    // We have Pb' * Q * R * Px * x = b <=> x = Px' * inv(R) * Q' * Pb * b

    // Permute the right hand sides
    SX bperm = b(rowperm_, ALL);

    // Solve the factorized system
    SX xperm = casadi::solve(R, mul(Q.T(), bperm));

    // Permute back the solution
    SX x = xperm(inv_colperm, ALL);

    // Generate the QR solve function
    vector<SX> solv_in(3);
    solv_in[0] = Q;
    solv_in[1] = R;
    solv_in[2] = b;
    SXFunction solv_fcn(solv_in, x);

    // Optionally generate c code and load as DLL
    if (codegen) {
      stringstream ss;
      ss << "symbolic_qr_solv_fcn_N_" << this;
      solv_fcn_N_ = dynamicCompilation(solv_fcn, ss.str(), "QR_solv_N", compiler);
    } else {
      solv_fcn_N_ = solv_fcn;
    }

    // Initialize solve function
    solv_fcn_N_.setOption("name", "QR_solv");
    solv_fcn_N_.init();

    // Solve transposed
    // We have (Pb' * Q * R * Px)' * x = b
    // <=> Px' * R' * Q' * Pb * x = b
    // <=> x = Pb' * Q * inv(R') * Px * b

    // Permute the right hand side
    bperm = b(colperm_, ALL);

    // Solve the factorized system
    xperm = mul(Q, casadi::solve(R.T(), bperm));
//.........这里部分代码省略.........
开发者ID:ghorn,项目名称:debian-casadi,代码行数:101,代码来源:symbolic_qr.cpp

示例3: init


//.........这里部分代码省略.........
      qp_solver_options = getOption("qp_solver_options");
    }

    // Allocate a QP solver
    qp_solver_ = QpSolver("qp_solver", getOption("qp_solver"),
                          make_map("h", H_sparsity, "a", A_sparsity),
                          qp_solver_options);

    // Lagrange multipliers of the NLP
    mu_.resize(ng_);
    mu_x_.resize(nx_);

    // Lagrange gradient in the next iterate
    gLag_.resize(nx_);
    gLag_old_.resize(nx_);

    // Current linearization point
    x_.resize(nx_);
    x_cand_.resize(nx_);
    x_old_.resize(nx_);

    // Constraint function value
    gk_.resize(ng_);
    gk_cand_.resize(ng_);

    // Hessian approximation
    Bk_ = DMatrix::zeros(H_sparsity);

    // Jacobian
    Jk_ = DMatrix::zeros(A_sparsity);

    // Bounds of the QP
    qp_LBA_.resize(ng_);
    qp_UBA_.resize(ng_);
    qp_LBX_.resize(nx_);
    qp_UBX_.resize(nx_);

    // QP solution
    dx_.resize(nx_);
    qp_DUAL_X_.resize(nx_);
    qp_DUAL_A_.resize(ng_);

    // Gradient of the objective
    gf_.resize(nx_);

    // Create Hessian update function
    if (!exact_hessian_) {
      // Create expressions corresponding to Bk, x, x_old, gLag and gLag_old
      SX Bk = SX::sym("Bk", H_sparsity);
      SX x = SX::sym("x", input(NLP_SOLVER_X0).sparsity());
      SX x_old = SX::sym("x", x.sparsity());
      SX gLag = SX::sym("gLag", x.sparsity());
      SX gLag_old = SX::sym("gLag_old", x.sparsity());

      SX sk = x - x_old;
      SX yk = gLag - gLag_old;
      SX qk = mul(Bk, sk);

      // Calculating theta
      SX skBksk = inner_prod(sk, qk);
      SX omega = if_else(inner_prod(yk, sk) < 0.2 * inner_prod(sk, qk),
                               0.8 * skBksk / (skBksk - inner_prod(sk, yk)),
                               1);
      yk = omega * yk + (1 - omega) * qk;
      SX theta = 1. / inner_prod(sk, yk);
      SX phi = 1. / inner_prod(qk, sk);
      SX Bk_new = Bk + theta * mul(yk, yk.T()) - phi * mul(qk, qk.T());

      // Inputs of the BFGS update function
      vector<SX> bfgs_in(BFGS_NUM_IN);
      bfgs_in[BFGS_BK] = Bk;
      bfgs_in[BFGS_X] = x;
      bfgs_in[BFGS_X_OLD] = x_old;
      bfgs_in[BFGS_GLAG] = gLag;
      bfgs_in[BFGS_GLAG_OLD] = gLag_old;
      bfgs_ = SXFunction("bfgs", bfgs_in, make_vector(Bk_new));

      // Initial Hessian approximation
      B_init_ = DMatrix::eye(nx_);
    }

    // Header
    if (static_cast<bool>(getOption("print_header"))) {
      userOut()
        << "-------------------------------------------" << endl
        << "This is casadi::SQPMethod." << endl;
      if (exact_hessian_) {
        userOut() << "Using exact Hessian" << endl;
      } else {
        userOut() << "Using limited memory BFGS Hessian approximation" << endl;
      }
      userOut()
        << endl
        << "Number of variables:                       " << setw(9) << nx_ << endl
        << "Number of constraints:                     " << setw(9) << ng_ << endl
        << "Number of nonzeros in constraint Jacobian: " << setw(9) << A_sparsity.nnz() << endl
        << "Number of nonzeros in Lagrangian Hessian:  " << setw(9) << H_sparsity.nnz() << endl
        << endl;
    }
  }
开发者ID:BrechtBa,项目名称:casadi,代码行数:101,代码来源:sqpmethod.cpp


注:本文中的SX::T方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。