本文整理汇总了C++中SX::numel方法的典型用法代码示例。如果您正苦于以下问题:C++ SX::numel方法的具体用法?C++ SX::numel怎么用?C++ SX::numel使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SX
的用法示例。
在下文中一共展示了SX::numel方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
//.........这里部分代码省略.........
SX Z = ssym("Z",N,K+1);
// State at final time
// SX ZF("ZF");
// All variables
SX x;
x << vec(trans(Z));
// x << vec(ZF);
cout << "x = " << x << endl;
// Construct the "NLP"
SX g;
for(int i=0; i<N; ++i){
for(int k=1; k<=K; ++k){
// Add collocation equations to NLP
SX rhs = 0;
for(int j=0; j<=K; ++j)
rhs += Z(i,j)*C[j][k];
g << (h*F.eval(SX(Z(i,k))) - rhs);
}
// Add continuity equation to NLP
SX rhs = 0;
for(int j=0; j<=K; ++j)
rhs += D[j]*Z(i,j);
if(i<N-1)
g << (SX(Z(i+1,0)) - rhs);
/* else
g << (ZF - rhs);*/
}
cout << "g = " << g << endl;
SXFunction gfcn(x,g);
// Dummy objective function
SXFunction obj(x, Z(0,0)*Z(0,0));
// ----
// SOLVE THE NLP
// ----
// Allocate an NLP solver
IpoptSolver solver(obj,gfcn);
// Set options
solver.setOption("tol",1e-10);
solver.setOption("hessian_approximation","limited-memory");
// pass_nonlinear_variables
// initialize the solver
solver.init();
// Initial condition
vector<double> xinit(x.numel(),0);
solver.setInput(xinit,"x0");
// Bounds on x
vector<double> lbx(x.numel(),-100);
vector<double> ubx(x.numel(), 100);
lbx[0] = ubx[0] = z0;
solver.setInput(lbx,"lbx");
solver.setInput(ubx,"ubx");
// Bounds on the constraints
vector<double> lubg(g.numel(),0);
solver.setInput(lubg,"lbg");
solver.setInput(lubg,"ubg");
// Solve the problem
solver.solve();
// Print the time points
vector<double> t_opt(N*(K+1)+1);
for(int i=0; i<N; ++i)
for(int j=0; j<=K; ++j)
t_opt[j + (K+1)*i] = h*(i + tau_root[j]);
t_opt.back() = 1;
cout << "time points: " << t_opt << endl;
resfile << t_opt << endl;
// Print the optimal cost
cout << "optimal cost: " << solver.output(NLP_SOLVER_F) << endl;
// Print the optimal solution
vector<double> xopt(x.numel());
solver.getOutput(xopt,"x");
cout << "optimal solution: " << xopt << endl;
resfile << xopt << endl;
}
resfile.close();
return 0;
}
示例2: init
void LiftedSQPInternal::init(){
// Call the init method of the base class
NlpSolverInternal::init();
// Number of lifted variables
nv = getOption("num_lifted");
if(verbose_){
cout << "Initializing SQP method with " << nx_ << " variables and " << ng_ << " constraints." << endl;
cout << "Lifting " << nv << " variables." << endl;
if(gauss_newton_){
cout << "Gauss-Newton objective with " << F_.input().numel() << " terms." << endl;
}
}
// Read options
max_iter_ = getOption("max_iter");
max_iter_ls_ = getOption("max_iter_ls");
toldx_ = getOption("toldx");
tolgl_ = getOption("tolgl");
sigma_ = getOption("sigma");
rho_ = getOption("rho");
mu_safety_ = getOption("mu_safety");
eta_ = getOption("eta");
tau_ = getOption("tau");
// Assume SXFunction for now
SXFunction ffcn = shared_cast<SXFunction>(F_);
casadi_assert(!ffcn.isNull());
SXFunction gfcn = shared_cast<SXFunction>(G_);
casadi_assert(!gfcn.isNull());
// Extract the free variables and split into independent and dependent variables
SX x = ffcn.inputExpr(0);
int nx = x.size();
nu = nx-nv;
SX u = x[Slice(0,nu)];
SX v = x[Slice(nu,nu+nv)];
// Extract the constraint equations and split into constraints and definitions of dependent variables
SX f1 = ffcn.outputExpr(0);
int nf1 = f1.numel();
SX g = gfcn.outputExpr(0);
int nf2 = g.numel()-nv;
SX v_eq = g(Slice(0,nv));
SX f2 = g(Slice(nv,nv+nf2));
// Definition of v
SX v_def = v_eq + v;
// Objective function
SX f;
// Multipliers
SX lam_x, lam_g, lam_f2;
if(gauss_newton_){
// Least square objective
f = inner_prod(f1,f1)/2;
} else {
// Scalar objective function
f = f1;
// Lagrange multipliers for the simple bounds on u
SX lam_u = ssym("lam_u",nu);
// Lagrange multipliers for the simple bounds on v
SX lam_v = ssym("lam_v",nv);
// Lagrange multipliers for the simple bounds on x
lam_x = vertcat(lam_u,lam_v);
// Lagrange multipliers corresponding to the definition of the dependent variables
SX lam_v_eq = ssym("lam_v_eq",nv);
// Lagrange multipliers for the nonlinear constraints that aren't eliminated
lam_f2 = ssym("lam_f2",nf2);
if(verbose_){
cout << "Allocated intermediate variables." << endl;
}
// Lagrange multipliers for constraints
lam_g = vertcat(lam_v_eq,lam_f2);
// Lagrangian function
SX lag = f + inner_prod(lam_x,x);
if(!f2.empty()) lag += inner_prod(lam_f2,f2);
if(!v.empty()) lag += inner_prod(lam_v_eq,v_def);
// Gradient of the Lagrangian
SX lgrad = casadi::gradient(lag,x);
if(!v.empty()) lgrad -= vertcat(SX::zeros(nu),lam_v_eq); // Put here to ensure that lgrad is of the form "h_extended -v_extended"
makeDense(lgrad);
if(verbose_){
cout << "Generated the gradient of the Lagrangian." << endl;
}
// Condensed gradient of the Lagrangian
//.........这里部分代码省略.........