当前位置: 首页>>代码示例>>C++>>正文


C++ RectangleTree::Point方法代码示例

本文整理汇总了C++中RectangleTree::Point方法的典型用法代码示例。如果您正苦于以下问题:C++ RectangleTree::Point方法的具体用法?C++ RectangleTree::Point怎么用?C++ RectangleTree::Point使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在RectangleTree的用法示例。


在下文中一共展示了RectangleTree::Point方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: if

void RectangleTree<MetricType, StatisticType, MatType, SplitType, DescentType,
                   AuxiliaryInformationType>::
    CondenseTree(const arma::vec& point,
                 std::vector<bool>& relevels,
                 const bool usePoint)
{
  // First delete the node if we need to.  There's no point in shrinking the
  // bound first.
  if (IsLeaf() && count < minLeafSize && parent != NULL)
  {
    // We can't delete the root node.
    for (size_t i = 0; i < parent->NumChildren(); i++)
    {
      if (parent->children[i] == this)
      {
        // Decrement numChildren.
        if (!auxiliaryInfo.HandleNodeRemoval(parent, i))
        {
          parent->children[i] = parent->children[--parent->NumChildren()];
        }

        // We find the root and shrink bounds at the same time.
        bool stillShrinking = true;
        RectangleTree* root = parent;
        while (root->Parent() != NULL)
        {
          if (stillShrinking)
            stillShrinking = root->ShrinkBoundForBound(bound);
          root = root->Parent();
        }
        if (stillShrinking)
          stillShrinking = root->ShrinkBoundForBound(bound);

        root = parent;
        while (root != NULL)
        {
          root->numDescendants -= numDescendants;
          root = root->Parent();
        }

        stillShrinking = true;
        root = parent;
        while (root->Parent() != NULL)
        {
          if (stillShrinking)
            stillShrinking = root->AuxiliaryInfo().UpdateAuxiliaryInfo(root);
          root = root->Parent();
        }
        if (stillShrinking)
          stillShrinking = root->AuxiliaryInfo().UpdateAuxiliaryInfo(root);

       // Reinsert the points at the root node.
        for (size_t j = 0; j < count; j++)
          root->InsertPoint(points[j], relevels);

        // This will check the minFill of the parent.
        parent->CondenseTree(point, relevels, usePoint);
        // Now it should be safe to delete this node.
        SoftDelete();

        return;
      }
    }
    // Control should never reach here.
    assert(false);
  }
  else if (!IsLeaf() && numChildren < minNumChildren)
  {
    if (parent != NULL)
    {
      // The normal case.  We need to be careful with the root.
      for (size_t j = 0; j < parent->NumChildren(); j++)
      {
        if (parent->children[j] == this)
        {
          // Decrement numChildren.
          if (!auxiliaryInfo.HandleNodeRemoval(parent,j))
          {
            parent->children[j] = parent->children[--parent->NumChildren()];
          }
          size_t level = TreeDepth();

          // We find the root and shrink bounds at the same time.
          bool stillShrinking = true;
          RectangleTree* root = parent;
          while (root->Parent() != NULL)
          {
            if (stillShrinking)
              stillShrinking = root->ShrinkBoundForBound(bound);
            root = root->Parent();
          }
          if (stillShrinking)
            stillShrinking = root->ShrinkBoundForBound(bound);

          root = parent;
          while (root != NULL)
          {
            root->numDescendants -= numDescendants;
            root = root->Parent();
          }
//.........这里部分代码省略.........
开发者ID:MarcosPividori,项目名称:mlpack,代码行数:101,代码来源:rectangle_tree_impl.hpp

示例2: if

void RectangleTree<MetricType, StatisticType, MatType, SplitType, DescentType,
                   AuxiliaryInformationType>::
DualTreeTraverser<RuleType>::Traverse(RectangleTree& queryNode,
                                      RectangleTree& referenceNode)
{
  // Increment the visit counter.
  ++numVisited;

  // Store the current traversal info.
  traversalInfo = rule.TraversalInfo();

  // We now have four options.
  // 1)  Both nodes are leaf nodes.
  // 2)  Only the reference node is a leaf node.
  // 3)  Only the query node is a leaf node.
  // 4)  Niether node is a leaf node.
  // We go through those options in that order.

  if (queryNode.IsLeaf() && referenceNode.IsLeaf())
  {
    // Evaluate the base case.  Do the query points on the outside so we can
    // possibly prune the reference node for that particular point.
    for (size_t query = 0; query < queryNode.Count(); ++query)
    {
      // Restore the traversal information.
      rule.TraversalInfo() = traversalInfo;
      const double childScore = rule.Score(queryNode.Point(query),
          referenceNode);

      if (childScore == DBL_MAX)
        continue;  // We don't require a search in this reference node.

      for(size_t ref = 0; ref < referenceNode.Count(); ++ref)
        rule.BaseCase(queryNode.Point(query), referenceNode.Point(ref));

      numBaseCases += referenceNode.Count();
    }
  }
  else if (!queryNode.IsLeaf() && referenceNode.IsLeaf())
  {
    // We only need to traverse down the query node.  Order doesn't matter here.
    for (size_t i = 0; i < queryNode.NumChildren(); ++i)
    {
      // Before recursing, we have to set the traversal information correctly.
      rule.TraversalInfo() = traversalInfo;
      ++numScores;
      if (rule.Score(queryNode.Child(i), referenceNode) < DBL_MAX)
        Traverse(queryNode.Child(i), referenceNode);
      else
        numPrunes++;
    }
  }
  else if (queryNode.IsLeaf() && !referenceNode.IsLeaf())
  {
    // We only need to traverse down the reference node.  Order does matter
    // here.

    // We sort the children of the reference node by their scores.
    std::vector<NodeAndScore> nodesAndScores(referenceNode.NumChildren());
    for (size_t i = 0; i < referenceNode.NumChildren(); i++)
    {
      rule.TraversalInfo() = traversalInfo;
      nodesAndScores[i].node = &(referenceNode.Child(i));
      nodesAndScores[i].score = rule.Score(queryNode,
          *(nodesAndScores[i].node));
      nodesAndScores[i].travInfo = rule.TraversalInfo();
    }
    std::sort(nodesAndScores.begin(), nodesAndScores.end(), nodeComparator);
    numScores += nodesAndScores.size();

    for (size_t i = 0; i < nodesAndScores.size(); i++)
    {
      rule.TraversalInfo() = nodesAndScores[i].travInfo;
      if (rule.Rescore(queryNode, *(nodesAndScores[i].node),
          nodesAndScores[i].score) < DBL_MAX)
      {
        Traverse(queryNode, *(nodesAndScores[i].node));
      }
      else
      {
        numPrunes += nodesAndScores.size() - i;
        break;
      }
    }
  }
  else
  {
    // We need to traverse down both the reference and the query trees.
    // We loop through all of the query nodes, and for each of them, we
    // loop through the reference nodes to see where we need to descend.
    for (size_t j = 0; j < queryNode.NumChildren(); j++)
    {
      // We sort the children of the reference node by their scores.
      std::vector<NodeAndScore> nodesAndScores(referenceNode.NumChildren());
      for (size_t i = 0; i < referenceNode.NumChildren(); i++)
      {
        rule.TraversalInfo() = traversalInfo;
        nodesAndScores[i].node = &(referenceNode.Child(i));
        nodesAndScores[i].score = rule.Score(queryNode.Child(j),
            *nodesAndScores[i].node);
//.........这里部分代码省略.........
开发者ID:YaweiZhao,项目名称:mlpack,代码行数:101,代码来源:dual_tree_traverser_impl.hpp


注:本文中的RectangleTree::Point方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。