本文整理汇总了C++中RectangleTree::NumChildren方法的典型用法代码示例。如果您正苦于以下问题:C++ RectangleTree::NumChildren方法的具体用法?C++ RectangleTree::NumChildren怎么用?C++ RectangleTree::NumChildren使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类RectangleTree
的用法示例。
在下文中一共展示了RectangleTree::NumChildren方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: maxNumChildren
RectangleTree<MetricType, StatisticType, MatType, SplitType, DescentType>::
RectangleTree(
const RectangleTree& other,
const bool deepCopy) :
maxNumChildren(other.MaxNumChildren()),
minNumChildren(other.MinNumChildren()),
numChildren(other.NumChildren()),
children(maxNumChildren + 1),
parent(other.Parent()),
begin(other.Begin()),
count(other.Count()),
maxLeafSize(other.MaxLeafSize()),
minLeafSize(other.MinLeafSize()),
bound(other.bound),
splitHistory(other.SplitHistory()),
parentDistance(other.ParentDistance()),
dataset(new MatType(*other.dataset)),
ownsDataset(true),
points(other.Points()),
localDataset(NULL)
{
if (deepCopy)
{
if (numChildren > 0)
{
for (size_t i = 0; i < numChildren; i++)
{
children[i] = new RectangleTree(*(other.Children()[i]));
}
}
else
{
localDataset = new MatType(other.LocalDataset());
}
}
else
{
children = other.Children();
arma::mat& otherData = const_cast<arma::mat&>(other.LocalDataset());
localDataset = &otherData;
}
}
示例2: maxNumChildren
RectangleTree<MetricType, StatisticType, MatType, SplitType, DescentType,
AuxiliaryInformationType>::
RectangleTree(
const RectangleTree& other,
const bool deepCopy,
RectangleTree* newParent) :
maxNumChildren(other.MaxNumChildren()),
minNumChildren(other.MinNumChildren()),
numChildren(other.NumChildren()),
children(maxNumChildren + 1, NULL),
parent(deepCopy ? newParent : other.Parent()),
begin(other.Begin()),
count(other.Count()),
numDescendants(other.numDescendants),
maxLeafSize(other.MaxLeafSize()),
minLeafSize(other.MinLeafSize()),
bound(other.bound),
parentDistance(other.ParentDistance()),
dataset(deepCopy ?
(parent ? parent->dataset : new MatType(*other.dataset)) :
&other.Dataset()),
ownsDataset(deepCopy && (!parent)),
points(other.points),
auxiliaryInfo(other.auxiliaryInfo, this, deepCopy)
{
if (deepCopy)
{
if (numChildren > 0)
{
for (size_t i = 0; i < numChildren; i++)
children[i] = new RectangleTree(other.Child(i), true, this);
}
}
else
children = other.children;
}
示例3: if
void RectangleTree<MetricType, StatisticType, MatType, SplitType, DescentType,
AuxiliaryInformationType>::
CondenseTree(const arma::vec& point,
std::vector<bool>& relevels,
const bool usePoint)
{
// First delete the node if we need to. There's no point in shrinking the
// bound first.
if (IsLeaf() && count < minLeafSize && parent != NULL)
{
// We can't delete the root node.
for (size_t i = 0; i < parent->NumChildren(); i++)
{
if (parent->children[i] == this)
{
// Decrement numChildren.
if (!auxiliaryInfo.HandleNodeRemoval(parent, i))
{
parent->children[i] = parent->children[--parent->NumChildren()];
}
// We find the root and shrink bounds at the same time.
bool stillShrinking = true;
RectangleTree* root = parent;
while (root->Parent() != NULL)
{
if (stillShrinking)
stillShrinking = root->ShrinkBoundForBound(bound);
root = root->Parent();
}
if (stillShrinking)
stillShrinking = root->ShrinkBoundForBound(bound);
root = parent;
while (root != NULL)
{
root->numDescendants -= numDescendants;
root = root->Parent();
}
stillShrinking = true;
root = parent;
while (root->Parent() != NULL)
{
if (stillShrinking)
stillShrinking = root->AuxiliaryInfo().UpdateAuxiliaryInfo(root);
root = root->Parent();
}
if (stillShrinking)
stillShrinking = root->AuxiliaryInfo().UpdateAuxiliaryInfo(root);
// Reinsert the points at the root node.
for (size_t j = 0; j < count; j++)
root->InsertPoint(points[j], relevels);
// This will check the minFill of the parent.
parent->CondenseTree(point, relevels, usePoint);
// Now it should be safe to delete this node.
SoftDelete();
return;
}
}
// Control should never reach here.
assert(false);
}
else if (!IsLeaf() && numChildren < minNumChildren)
{
if (parent != NULL)
{
// The normal case. We need to be careful with the root.
for (size_t j = 0; j < parent->NumChildren(); j++)
{
if (parent->children[j] == this)
{
// Decrement numChildren.
if (!auxiliaryInfo.HandleNodeRemoval(parent,j))
{
parent->children[j] = parent->children[--parent->NumChildren()];
}
size_t level = TreeDepth();
// We find the root and shrink bounds at the same time.
bool stillShrinking = true;
RectangleTree* root = parent;
while (root->Parent() != NULL)
{
if (stillShrinking)
stillShrinking = root->ShrinkBoundForBound(bound);
root = root->Parent();
}
if (stillShrinking)
stillShrinking = root->ShrinkBoundForBound(bound);
root = parent;
while (root != NULL)
{
root->numDescendants -= numDescendants;
root = root->Parent();
}
//.........这里部分代码省略.........
示例4: if
void RectangleTree<MetricType, StatisticType, MatType, SplitType, DescentType,
AuxiliaryInformationType>::
DualTreeTraverser<RuleType>::Traverse(RectangleTree& queryNode,
RectangleTree& referenceNode)
{
// Increment the visit counter.
++numVisited;
// Store the current traversal info.
traversalInfo = rule.TraversalInfo();
// We now have four options.
// 1) Both nodes are leaf nodes.
// 2) Only the reference node is a leaf node.
// 3) Only the query node is a leaf node.
// 4) Niether node is a leaf node.
// We go through those options in that order.
if (queryNode.IsLeaf() && referenceNode.IsLeaf())
{
// Evaluate the base case. Do the query points on the outside so we can
// possibly prune the reference node for that particular point.
for (size_t query = 0; query < queryNode.Count(); ++query)
{
// Restore the traversal information.
rule.TraversalInfo() = traversalInfo;
const double childScore = rule.Score(queryNode.Point(query),
referenceNode);
if (childScore == DBL_MAX)
continue; // We don't require a search in this reference node.
for(size_t ref = 0; ref < referenceNode.Count(); ++ref)
rule.BaseCase(queryNode.Point(query), referenceNode.Point(ref));
numBaseCases += referenceNode.Count();
}
}
else if (!queryNode.IsLeaf() && referenceNode.IsLeaf())
{
// We only need to traverse down the query node. Order doesn't matter here.
for (size_t i = 0; i < queryNode.NumChildren(); ++i)
{
// Before recursing, we have to set the traversal information correctly.
rule.TraversalInfo() = traversalInfo;
++numScores;
if (rule.Score(queryNode.Child(i), referenceNode) < DBL_MAX)
Traverse(queryNode.Child(i), referenceNode);
else
numPrunes++;
}
}
else if (queryNode.IsLeaf() && !referenceNode.IsLeaf())
{
// We only need to traverse down the reference node. Order does matter
// here.
// We sort the children of the reference node by their scores.
std::vector<NodeAndScore> nodesAndScores(referenceNode.NumChildren());
for (size_t i = 0; i < referenceNode.NumChildren(); i++)
{
rule.TraversalInfo() = traversalInfo;
nodesAndScores[i].node = &(referenceNode.Child(i));
nodesAndScores[i].score = rule.Score(queryNode,
*(nodesAndScores[i].node));
nodesAndScores[i].travInfo = rule.TraversalInfo();
}
std::sort(nodesAndScores.begin(), nodesAndScores.end(), nodeComparator);
numScores += nodesAndScores.size();
for (size_t i = 0; i < nodesAndScores.size(); i++)
{
rule.TraversalInfo() = nodesAndScores[i].travInfo;
if (rule.Rescore(queryNode, *(nodesAndScores[i].node),
nodesAndScores[i].score) < DBL_MAX)
{
Traverse(queryNode, *(nodesAndScores[i].node));
}
else
{
numPrunes += nodesAndScores.size() - i;
break;
}
}
}
else
{
// We need to traverse down both the reference and the query trees.
// We loop through all of the query nodes, and for each of them, we
// loop through the reference nodes to see where we need to descend.
for (size_t j = 0; j < queryNode.NumChildren(); j++)
{
// We sort the children of the reference node by their scores.
std::vector<NodeAndScore> nodesAndScores(referenceNode.NumChildren());
for (size_t i = 0; i < referenceNode.NumChildren(); i++)
{
rule.TraversalInfo() = traversalInfo;
nodesAndScores[i].node = &(referenceNode.Child(i));
nodesAndScores[i].score = rule.Score(queryNode.Child(j),
*nodesAndScores[i].node);
//.........这里部分代码省略.........